
Chantal M Boulanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4161407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	3.8	44
2	Messages from the heart. European Heart Journal, 2021, 42, 2793-2795.	2.2	1
3	The power of imaging to understand extracellular vesicle biology in vivo. Nature Methods, 2021, 18, 1013-1026.	19.0	163
4	Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity, 2021, 54, 1989-2004.e9.	14.3	50
5	Role of extracellular vesicles in atherosclerosis: An update. Journal of Leukocyte Biology, 2021, 111, 51-62.	3.3	19
6	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 5	42 Td (editio 1,430
7	Impact of left atrial appendage closure on circulating microvesicles levels: The MICROPLUG study. International Journal of Cardiology, 2020, 307, 24-30.	1.7	2
8	A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. Journal of Hepatology, 2020, 72, 528-538.	3.7	113
9	Analysis of Neat Biofluids Obtained During Cardiac Surgery Using Nanoparticle Tracking Analysis: Methodological Considerations. Frontiers in Cell and Developmental Biology, 2020, 8, 367.	3.7	6
10	Erythrocyte-derived microvesicles induce arterial spasms in JAK2V617F myeloproliferative neoplasm. Journal of Clinical Investigation, 2020, 130, 2630-2643.	8.2	42
11	Long Noncoding RNA-Enriched Vesicles Secreted by Hypoxic Cardiomyocytes Drive Cardiac Fibrosis. Molecular Therapy - Nucleic Acids, 2019, 18, 363-374.	5.1	83
12	Extracellular Mitochondria and Vesicles. Circulation Research, 2019, 125, 53-54.	4.5	9
13	Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescenceâ€ŧagged vesicles as biological reference material. Journal of Extracellular Vesicles, 2019, 8, 1587567.	12.2	224
14	Tribute to Paul M. Vanhoutte, MD, PhD (1940–2019). Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2445-2447.	2.4	0
15	Treprostinil treatment decreases circulating platelet microvesicles and their procoagulant activity in pediatric pulmonary hypertension. Pediatric Pulmonology, 2019, 54, 66-72.	2.0	13
16	Endothelial Autophagy Does Not Influence Venous Thrombosis in Mice. Thrombosis and Haemostasis, 2018, 118, 1113-1115.	3.4	3
17	Endothelial JAK2 does not enhance liver lesions in mice with Budd-Chiari syndrome. Journal of Hepatology, 2018, 68, 1086-1087.	3.7	3
18	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	3.8	284

#	Article	IF	CITATIONS
19	Hepatocyte microvesicle levels improve prediction of mortality in patients with cirrhosis. Hepatology, 2018, 68, 1508-1518.	7.3	33
20	Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction. Circulation Research, 2018, 123, 100-106.	4.5	181
21	Endothelial Microparticles are Associated to Pathogenesis of Idiopathic Pulmonary Fibrosis. Stem Cell Reviews and Reports, 2018, 14, 223-235.	5.6	31
22	Endothelial autophagic flux hampers atherosclerotic lesion development. Autophagy, 2018, 14, 173-175.	9.1	24
23	Highlight on Endothelial Activation and Beyond. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e198-e201.	2.4	20
24	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
25	Cardiovascular Research in France. Circulation Research, 2018, 122, 657-660.	4.5	3
26	Extracellular vesicles in coronary artery disease. Nature Reviews Cardiology, 2017, 14, 259-272.	13.7	392
27	A prospective study of the utility of plasma biomarkers to diagnose alcoholic hepatitis. Hepatology, 2017, 66, 555-563.	7.3	91
28	Thrombus composition in sudden cardiac death from acute myocardial infarction. Resuscitation, 2017, 113, 108-114.	3.0	24
29	Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8675-E8684.	7.1	156
30	Paradoxical Suppression of Atherosclerosis in the Absence of microRNA-146a. Circulation Research, 2017, 121, 354-367.	4.5	79
31	Microvesicles in vascular homeostasis and diseases. Thrombosis and Haemostasis, 2017, 117, 1296-1316.	3.4	193
32	Recombinant tissue plasminogen activator enhances microparticle release from mouse brain-derived endothelial cells through plasmin. Journal of the Neurological Sciences, 2016, 370, 187-195.	0.6	6
33	Biomarkers of vascular dysfunction and cognitive decline in patients with Alzheimer's disease: no evidence for association in elderly subjects. Aging Clinical and Experimental Research, 2016, 28, 1133-1141.	2.9	11
34	Cardiovascular progenitor–derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. Journal of Heart and Lung Transplantation, 2016, 35, 795-807.	0.6	161
35	Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e26-31.	2.4	58
36	Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles. Journal of Biological Chemistry, 2016, 291, 10476-10489.	3.4	46

#	Article	IF	CITATIONS
37	Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut, 2016, 65, 1882-1894.	12.1	140
38	Autosis occurs in the liver of patients with severe anorexia nervosa. Hepatology, 2015, 62, 657-658.	7.3	35
39	Novel methodologies for biomarker discovery in atherosclerosis. European Heart Journal, 2015, 36, 2635-2642.	2.2	174
40	Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology, 2015, 61, 1041-1055.	7.3	102
41	Extracellular vesicles as new pharmacological targets to treat atherosclerosis. European Journal of Pharmacology, 2015, 763, 90-103.	3.5	62
42	Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood, 2015, 125, 3805-3814.	1.4	217
43	Interplay of Inflammation and Endothelial Dysfunction in Bone Marrow Transplantation: Focus on Hepatic Veno-Occlusive Disease. Seminars in Thrombosis and Hemostasis, 2015, 41, 629-643.	2.7	48
44	The role of microparticles in inflammation and transfusion: A concise review. Transfusion and Apheresis Science, 2015, 53, 159-167.	1.0	72
45	Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. Journal of Lipid Research, 2015, 56, 440-448.	4.2	96
46	Microparticles and sudden cardiac death due to coronary occlusion. The TIDE (Thrombus and) Tj ETQq0 0 0 rgBT 28-36.	/Overlock 1.0	10 Tf 50 387 39
47	MicroRNAs as therapeutic targets in atherosclerosis. Expert Opinion on Therapeutic Targets, 2015, 19, 489-496.	3.4	33
48	Unexpected benefits of TAVI: a therapy for the heart and the vessels. EuroIntervention, 2015, 10, 1375-1377.	3.2	4
49	Liver Autophagy in Anorexia Nervosa and Acute Liver Injury. BioMed Research International, 2014, 2014, 1-10.	1.9	44
50	Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. European Heart Journal, 2014, 35, 2972-2979.	2.2	193
51	Microvesicles as Cell–Cell Messengers in Cardiovascular Diseases. Circulation Research, 2014, 114, 345-353.	4.5	348
52	The emerging roles of microvesicles in liver diseases. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 350-361.	17.8	158
53	Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice. Circulation Research, 2014, 114, 434-443.	4.5	317
54	Tumor Vessel Normalization by Chloroquine Independent of Autophagy. Cancer Cell, 2014, 26, 190-206.	16.8	358

#	Article	IF	CITATIONS
55	Circulating platelet derived microparticles are not increased in patients with cirrhosis. Journal of Hepatology, 2013, 59, 912.	3.7	7
56	Mechanical Forces Stimulate Endothelial Microparticle Generation via Caspaseâ€Dependent Apoptosisâ€Independent Mechanism. Pulmonary Circulation, 2013, 3, 95-99.	1.7	25
57	Cellular microparticles in the pathogenesis of pulmonary hypertension. European Respiratory Journal, 2013, 42, 272-279.	6.7	51
58	Shear Stress Regulates Endothelial Microparticle Release. Circulation Research, 2013, 112, 1323-1333.	4.5	143
59	Predictive value of circulating endothelial microparticles for cardiovascular mortality in end-stage renal failure: a pilot study. Nephrology Dialysis Transplantation, 2012, 27, 1873-1880.	0.7	121
60	Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica, 2012, 97, 1864-1872.	3.5	102
61	Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood, 2012, 120, 5050-5058.	1.4	101
62	Endothelial Cell–derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of MR Imaging Monitoring in Mice. Radiology, 2012, 263, 169-178.	7.3	38
63	Circulating immune complexes do not affect microparticle flow cytometry analysis in acute coronary syndrome. Blood, 2012, 119, 2174-2175.	1.4	11
64	Cellâ€derived microparticles in atherosclerosis: biomarkers and targets for pharmacological modulation?. Journal of Cellular and Molecular Medicine, 2012, 16, 1365-1376.	3.6	65
65	Abnormal Plasma Microparticles Impair Vasoconstrictor Responses in Patients With Cirrhosis. Gastroenterology, 2012, 143, 166-176.e6.	1.3	105
66	Prospective Study on Circulating MicroRNAs and Risk of Myocardial Infarction. Journal of the American College of Cardiology, 2012, 60, 290-299.	2.8	419
67	Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology, 2012, 64, 109-130.	1.6	175
68	The Many Faces of Endothelial Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 27-33.	2.4	558
69	Microparticles: An Introduction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2-3.	2.4	33
70	PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH. Atherosclerosis, 2011, 218, 69-76.	0.8	24
71	Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. European Journal of Cardiovascular Prevention and Rehabilitation, 2011, 18, 775-789.	2.8	245
72	Microparticles, Vascular Function, and Atherothrombosis. Circulation Research, 2011, 109, 593-606.	4.5	331

#	Article	IF	CITATIONS
73	Circulating microparticle levels in patients with coronary artery disease: a new indicator of vulnerability?. European Heart Journal, 2011, 32, 1958-1960.	2.2	15
74	Microparticles From Human Atherosclerotic Plaques Promote Endothelial ICAM-1–Dependent Monocyte Adhesion and Transendothelial Migration. Circulation Research, 2011, 108, 335-343.	4.5	221
75	Circulating microparticles may influence early carotid artery remodeling. Journal of Hypertension, 2010, 28, 789-796.	0.5	33
76	Microparticles, vascular function and hypertension. Current Opinion in Nephrology and Hypertension, 2010, 19, 177-180.	2.0	62
77	Increased Vitreous Shedding of Microparticles in Proliferative Diabetic Retinopathy Stimulates Endothelial Proliferation. Diabetes, 2010, 59, 694-701.	0.6	65
78	Circulating Microparticles and Procoagulant Activity in Elderly Patients. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 414-420.	3.6	46
79	Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information. Nanomedicine, 2010, 5, 727-738.	3.3	18
80	Microparticles: Key Protagonists in Cardiovascular Disorders. Seminars in Thrombosis and Hemostasis, 2010, 36, 907-916.	2.7	127
81	INS-1 Cells Undergoing Caspase-Dependent Apoptosis Enhance the Regenerative Capacity of Neighboring Cells. Diabetes, 2010, 59, 2799-2808.	0.6	40
82	Proteomics, Metabolomics, and Immunomics on Microparticles Derived From Human Atherosclerotic Plaques. Circulation: Cardiovascular Genetics, 2009, 2, 379-388.	5.1	125
83	Microparticles From Ischemic Muscle Promotes Postnatal Vasculogenesis. Circulation, 2009, 119, 2808-2817.	1.6	118
84	Endothelial microparticles in diseases. Cell and Tissue Research, 2009, 335, 143-151.	2.9	373
85	Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood, 2009, 114, 723-732.	1.4	262
86	Neuronal nitric oxide synthase does not contribute to the modulation of pulmonary vascular tone in fetal lambs with congenital diaphragmatic hernia (nNOS in CDH lambs). Pediatric Pulmonology, 2008, 43, 313-321.	2.0	6
87	Proteomic analysis of secretory proteins and vesicles in vascular research. Proteomics - Clinical Applications, 2008, 2, 882-891.	1.6	22
88	Role of microparticles in atherothrombosis. Journal of Internal Medicine, 2008, 263, 528-537.	6.0	110
89	CD40 Ligand+ Microparticles From Human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis. Journal of the American College of Cardiology, 2008, 52, 1302-1311.	2.8	176
90	Neurotrophin p75 Receptor (p75 ^{NTR}) Promotes Endothelial Cell Apoptosis and Inhibits Angiogenesis. Circulation Research, 2008, 103, e15-26.	4.5	90

#	Article	IF	CITATIONS
91	Response to Letter by Garcila Martiln et al. Stroke, 2008, 39, .	2.0	0
92	CD36 Is Significantly Correlated with Adipophilin in Human Carotid Lesions and Inversely Correlated with Plasma ApoAI. Journal of Biomedicine and Biotechnology, 2008, 2008, 1-8.	3.0	7
93	Are Circulating Endothelial-Derived and Platelet-Derived Microparticles a Pathogenic Factor in the Cisplatin-Induced Stroke?. Stroke, 2007, 38, 1636-1638.	2.0	43
94	Lactadherin Deficiency Leads to Apoptotic Cell Accumulation and Accelerated Atherosclerosis in Mice. Circulation, 2007, 115, 2168-2177.	1.6	236
95	In Vivo Shear Stress Determines Circulating Levels of Endothelial Microparticles in End-Stage Renal Disease. Hypertension, 2007, 49, 902-908.	2.7	159
96	New marker of atherosclerosis in hypercholesterolemia: an index relating endothelial injury to repair capacity. Future Lipidology, 2007, 2, 153-155.	0.5	0
97	Microparticles of Human Atherosclerotic Plaques Enhance the Shedding of the Tumor Necrosis Factor-α Converting Enzyme/ADAM17 Substrates, Tumor Necrosis Factor and Tumor Necrosis Factor Receptor-1. American Journal of Pathology, 2007, 171, 1713-1723.	3.8	105
98	Cellular Origins and Thrombogenic Activity of Microparticles Isolated From Human Atherosclerotic Plaques. Journal of the American College of Cardiology, 2007, 49, 772-777.	2.8	346
99	Circulating Microparticles. Hypertension, 2006, 48, 180-186.	2.7	342
100	Gab1, SHP2, and Protein Kinase A Are Crucial for the Activation of the Endothelial NO Synthase by Fluid Shear Stress. Circulation Research, 2005, 97, 1236-1244.	4.5	82
101	Circulating Endothelial Microparticles Are Associated with Vascular Dysfunction in Patients with End-Stage Renal Failure. Journal of the American Society of Nephrology: JASN, 2005, 16, 3381-3388.	6.1	477
102	Dying for attention: Microparticles and angiogenesis. Cardiovascular Research, 2005, 67, 1-3.	3.8	17
103	Flow-Dependent Dilation Mediated by Endogenous Kinins Requires Angiotensin AT2Receptors. Circulation Research, 2004, 94, 1623-1629.	4.5	83
104	Arterial stiffness and angiotensinogen gene in hypertensive patients and mutant mice. Journal of Hypertension, 2004, 22, 1299-1307.	0.5	24
105	Minimally Invasive, In Vivo Exploration of Mouse Small Artery Reactivity. Journal of Cardiovascular Pharmacology, 2004, 43, 271-275.	1.9	3
106	Role of tissue kallikrein in response to flow in mouse resistance arteries. Journal of Hypertension, 2004, 22, 745-750.	0.5	21
107	Uterine Artery Structural and Functional Changes During Pregnancy in Tissue Kallikrein–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1826-1832.	2.4	39
108	Intraluminal pressure increases vascular neuronal nitric oxide synthase expression. Journal of Hypertension, 2003, 21, 937-942.	0.5	15

#	Article	IF	CITATIONS
109	Oxygen-derived free radicals mediate endothelium-dependent contractions to acetylcholine in aortas from spontaneously hypertensive rats. British Journal of Pharmacology, 2002, 136, 104-110.	5.4	147
110	Circulating Microparticles From Patients With Myocardial Infarction Cause Endothelial Dysfunction. Circulation, 2001, 104, 2649-2652.	1.6	463
111	Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2634-2639.	7.1	155
112	Decreased Flow-Dependent Dilation in Carotid Arteries of Tissue Kallikrein–Knockout Mice. Circulation Research, 2001, 88, 593-599.	4.5	108
113	Proangiogenic Effect of Angiotensin-Converting Enzyme Inhibition Is Mediated by the Bradykinin B ₂ Receptor Pathway. Circulation Research, 2001, 89, 678-683.	4.5	172
114	Increased Contribution of l -Arginine–Nitric Oxide Pathway in Aorta of Mice Lacking the Gene for Vimentin. Journal of Cardiovascular Pharmacology, 2001, 38, 552-560.	1.9	3
115	Cycloâ€oxygenaseâ€l and â^'2 contribution to endothelial dysfunction in ageing. British Journal of Pharmacology, 2000, 131, 804-810.	5.4	91
116	Endothelial Dysfunction and Collagen Accumulation. Circulation, 1999, 100, 1109-1115.	1.6	124
117	Secondary Endothelial Dysfunction: Hypertension and Heart Failure. Journal of Molecular and Cellular Cardiology, 1999, 31, 39-49.	1.9	149
118	The hemoregulatory peptide N-acetyl-ser-asp-lys-pro impairs angiotensin I-induced contractions in rat aorta. European Journal of Pharmacology, 1998, 363, 153-156.	3.5	7
119	Acute and Chronic Effects of Dexfenfluramine on the Porcine Pulmonary Artery. General Pharmacology, 1998, 30, 403-410.	0.7	4
120	Neuronal Nitric Oxide Synthase Is Expressed in Rat Vascular Smooth Muscle Cells. Circulation Research, 1998, 83, 1271-1278.	4.5	199
121	Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4630-4634.	7.1	367
122	G Proteins and Endothelium-Dependent Relaxations. Journal of Vascular Research, 1997, 34, 175-185.	1.4	54
123	Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin Journal of Clinical Investigation, 1997, 100, 2909-2914.	8.2	150
124	Endothelial Dysfunction after Angioplasty: A Pathway for Remodelling?. Developments in Cardiovascular Medicine, 1997, , 231-252.	0.1	0
125	Trandolapril plus verapamil inhibits the coronary vasospasm induced by hypoxia following ischemia-reperfusion injury in dogs. General Pharmacology, 1996, 27, 1057-1059.	0.7	3

Molecular and cellular biology of endothelin and its receptors. , 1996, , 96-104.

35

#	Article	IF	CITATIONS
127	Endothelium-Derived Relaxing Factors and Converting Enzyme Inhibition. American Journal of Cardiology, 1995, 76, 3E-12E.	1.6	104
128	Angiotensin II Increases cGMP Content Via Endothelial Angiotensin II AT1 Subtype Receptors in the Rat Carotid Artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 1646-1651.	2.4	41
129	Endothelium-Dependent Responses in Hypertension Hypertension Research, 1995, 18, 87-98.	2.7	130
130	Inhibition of the Angiotensin Converting Enzyme by Perindoprilat and Release of Nitric Oxide. American Journal of Hypertension, 1995, 8, 1S-6S.	2.0	10
131	Gi proteins and the response to 5â€hydroxytryptamine in porcine cultured endothelial cells with impaired release of EDRF. British Journal of Pharmacology, 1995, 115, 822-827.	5.4	10
132	Endothelial AT 1 –Mediated Release of Nitric Oxide Decreases Angiotensin II Contractions in Rat Carotid Artery. Hypertension, 1995, 26, 752-757.	2.7	103
133	Endothelium-Dependent Contractions Are Associated With Both Augmented Expressionof Prostaglandin H Synthase-1 and Hypersensitivity to Prostaglandin H ₂ in the SHR Aorta. Circulation Research, 1995, 76, 1003-1010.	4.5	148
134	Effects of the Ca2+ Antagonist RO 40–5967 on Endothelium-Dependent Responses of Isolated Arteries. Journal of Cardiovascular Pharmacology, 1994, 23, 869-876.	1.9	30
135	The Endothelium and Vascular Effects of the ACE Inhibitor Trandolaprilat. Journal of Cardiovascular Pharmacology, 1994, 23, S1-5.	1.9	6
136	Effects of the Combined 5-Hydroxytryptamine2 Receptor and Ca2+ Channel Antagonist LU49938 on the Responsiveness of Isolated Porcine Coronary Arteries With and Without Endothelium. Journal of Cardiovascular Pharmacology, 1994, 24, 517.	1.9	2
137	Chronic Treatment with the CA2+Channel Inhibitor RO 40-5967 Potentiates Endothelium-Dependent Relaxations in the Aorta of the Hypertensive Salt Sensitive Dahl Rat. Blood Pressure, 1994, 3, 193-196.	1.5	27
138	Mediation by M ₃ â€muscarinic receptors of both endotheliumâ€dependent contraction and relaxation to acetylcholine in the aorta of the spontaneously hypertensive rat. British Journal of Pharmacology, 1994, 112, 519-524.	5.4	89
139	Effects of S9977 on adrenergic neurotransmission. General Pharmacology, 1993, 24, 429-434.	0.7	2
140	Growth Factor Regulation of Interleukin-1β-Induced Nitric Oxide Synthase and GTP: Cyclohydrolase Expression in Cultured Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 1993, 196, 1261-1266.	2.1	28
141	Endothelium-Dependent Effects of Converting-Enzyme Inhibitors. Journal of Cardiovascular Pharmacology, 1993, 22, S10-S16.	1.9	72
142	Endothelium-Derived Nitric Oxide, Endothelin, and Platelet Vessel Wall Interaction: Alterations in Hypercholesterolemia and Atherosclerosis. Seminars in Thrombosis and Hemostasis, 1993, 19, 167-175.	2.7	40
143	Cholera toxin augments the release of endothelium-derived relaxing factor evoked by bradykinin and the calcium ionophore A23187. General Pharmacology, 1992, 23, 27-31.	0.7	7
144	Ouabain, na+-free and k+-free solutions and relaxations to nitric oxide and nitrovasodilators. General Pharmacology, 1991, 22, 337-340.	0.7	6

#	Article	IF	CITATIONS
145	Differential Effect of Cyclic GMP on the Release of Endothelin-1 from Cultured Endothelial Cells and Intact Porcine Aorta. Journal of Cardiovascular Pharmacology, 1991, 17, S264-266.	1.9	26
146	Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide Journal of Clinical Investigation, 1990, 85, 587-590.	8.2	944
147	Does Endothelin-1 Mediate Endothelium-Dependent Contractions During Anoxia?. Journal of Cardiovascular Pharmacology, 1989, 13, S124-128.	1.9	75