Fei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160992/publications.pdf

Version: 2024-02-01

		117625	118850
73	3,944	34	62
papers	citations	h-index	g-index
80	80	80	4522
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Semiconductorâ€Mediatorâ€Catalyst Artificial Photosynthetic System for Photoelectrochemical Water Oxidation. Chemistry - A European Journal, 2022, 28, e202102630.	3.3	4
2	The hangman effect boosts hydrogen production by a manganese terpyridine complex. Chemical Communications, 2022, 58, 5128-5131.	4.1	8
3	Photoelectrochemical water oxidation improved by pyridine <i>N</i> -oxide as a mimic of tyrosine-Z in photosystem II. Chemical Science, 2022, 13, 4955-4961.	7.4	4
4	Water oxidation by a noble metal-free photoanode modified with an organic dye and a molecular cobalt catalyst. Journal of Materials Chemistry A, 2022, 10, 9121-9128.	10.3	6
5	Aqueous CO ₂ Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angewandte Chemie, 2022, 134, .	2.0	2
6	Aqueous CO ₂ Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
7	Polymeric Viologen-Based Electron Transfer Mediator for Improving the Photoelectrochemical Water Splitting on Sb2Se3 Photocathode. Fundamental Research, 2022, , .	3.3	O
8	Immobilization of Iron Phthalocyanine on Pyridine-Functionalized Carbon Nanotubes for Efficient Nitrogen Reduction Reaction. ACS Catalysis, 2022, 12, 5502-5509.	11.2	36
9	Frontispiece: Aqueous CO ₂ Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	O
10	Frontispiz: Aqueous CO ₂ Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angewandte Chemie, 2022, 134, .	2.0	0
11	Electrocatalytic nitrate reduction to ammonia <i>via</i> amorphous cobalt boride. Chemical Communications, 2022, 58, 8714-8717.	4.1	24
12	Switching O O bond formation mechanism between WNA and I2M pathways by modifying the Ru-bda backbone ligands of water-oxidation catalysts. Journal of Energy Chemistry, 2021, 54, 815-821.	12.9	16
13	Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 2663-2695.	38.1	333
14	A bio-inspired mononuclear manganese catalyst for high-rate electrochemical hydrogen production. Dalton Transactions, 2021, 50, 4783-4788.	3.3	8
15	Self-Assembled 2,3-Dicyanopyrazino Phenanthrene Aggregates as a Visible-Light Photocatalyst. Journal of Organic Chemistry, 2021, 86, 5016-5025.	3.2	9
16	A semiconductor/molecular catalyst hybrid photoanode with FeOOH as an electron transfer relay. Chemistry - an Asian Journal, 2021, 16, 1745-1749.	3.3	1
17	Dye-sensitized photoanode decorated with pyridine additives for efficient solar water oxidation. Chinese Journal of Catalysis, 2021, 42, 1352-1359.	14.0	8
18	Multipleâ€Site Concerted Proton–Electron Transfer in a Manganeseâ€Based Complete Functional Model for [FeFe]â€Hydrogenase. Angewandte Chemie - International Edition, 2021, 60, 25839-25845.	13.8	9

#	Article	IF	CITATIONS
19	A Tandem Strategy for Enhancing Electrochemical CO ₂ Reduction Activity of Singleâ€Atom Cuâ€S ₁ N ₃ Catalysts via Integration with Cu Nanoclusters. Angewandte Chemie, 2021, 133, 24224-24229.	2.0	15
20	A Tandem Strategy for Enhancing Electrochemical CO ₂ Reduction Activity of Singleâ€Atom Cuâ€6 ₁ N ₃ Catalysts via Integration with Cu Nanoclusters. Angewandte Chemie - International Edition, 2021, 60, 24022-24027.	13.8	127
21	Photodriven water oxidation initiated by a surface bound chromophore-donor-catalyst assembly. Chemical Science, 2021, 12, 14441-14450.	7.4	16
22	Hybrid Photoelectrochemical Water Splitting Systems: From Interface Design to System Assembly. Advanced Energy Materials, 2020, 10, 1900399.	19.5	152
23	Orthogonal Supramolecular Assembly Triggered by Inclusion and Exclusion Interactions with Cucurbit[7]uril for Photocatalytic H 2 Evolution. ChemSusChem, 2020, 13, 394-399.	6.8	13
24	A stable dye-sensitized photoelectrosynthesis cell mediated by a NiO overlayer for water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12564-12571.	7.1	32
25	Cobalt doped BiVO (sub) 4 (/sub) with rich oxygen vacancies for efficient photoelectrochemical water oxidation. RSC Advances, 2020, 10, 28523-28526.	3.6	22
26	Nickel-selenide templated binary metal–organic frameworks for efficient water oxidation. Journal of Materials Chemistry A, 2020, 8, 16908-16912.	10.3	31
27	Stabilization of a molecular water oxidation catalyst on a dyeâ°sensitized photoanode by aÂpyridyl anchor. Nature Communications, 2020, 11, 4610.	12.8	38
28	Selective CO Production by Photoelectrochemical CO ₂ Reduction in an Aqueous Solution with Cobalt-Based Molecular Redox Catalysts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 41644-41648.	8.0	13
29	Water Oxidation Catalyzed by Ruthenium Complexes with 4â€Hydroxypyridineâ€2,6â€dicarboxylate as a Negatively Charged Tridentate Ligand. European Journal of Inorganic Chemistry, 2020, 2020, 2238-2245.	2.0	4
30	A molecular tandem cell for efficient solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13256-13260.	7.1	28
31	Immobilization of a molecular cobalt cubane catalyst on porous BiVO ₄ <i>via</i> electrochemical polymerization for efficient and stable photoelectrochemical water oxidation. Chemical Communications, 2019, 55, 1414-1417.	4.1	23
32	Base-enhanced electrochemical water oxidation by a nickel complex in neutral aqueous solution. Chemical Communications, 2019, 55, 6122-6125.	4.1	36
33	Iron–Salen Complex and Co ²⁺ Ionâ€Derived Cobalt–Iron Hydroxide/Carbon Nanohybrid as an Efficient Oxygen Evolution Electrocatalyst. Advanced Science, 2019, 6, 1900117.	11.2	29
34	Iron carbonate hydroxide templated binary metal–organic frameworks for highly efficient electrochemical water oxidation. Chemical Communications, 2019, 55, 14773-14776.	4.1	41
35	Hierarchically Structured FeNiO _{<i>x</i>} H _{<i>y</i>} Electrocatalyst Formed by Inâ€Situ Transformation of Metal Phosphate for Efficient Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 1761-1767.	6.8	20
36	Integration of FeOOH and Zeolitic Imidazolate Frameworkâ€Derived Nanoporous Carbon as an Efficient Electrocatalyst for Water Oxidation. Advanced Energy Materials, 2018, 8, 1702598.	19.5	79

#	Article	IF	CITATIONS
37	Cu ₃ P/CuO Coreâ€Shell Nanorod Arrays as Highâ€Performance Electrocatalysts for Water Oxidation. ChemElectroChem, 2018, 5, 2064-2068.	3.4	20
38	Molecular cobalt salophen catalyst-integrated BiVO ₄ as stable and robust photoanodes for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 10761-10768.	10.3	54
39	Visible light-driven oxygen evolution using a binuclear Ru-bda catalyst. Chinese Journal of Catalysis, 2018, 39, 446-452.	14.0	10
40	Simultaneous oxidation of alcohols and hydrogen evolution in a hybrid system under visible light irradiation. Applied Catalysis B: Environmental, 2018, 225, 258-263.	20.2	71
41	Hierarchically Structured FeNiO x H y Electrocatalyst Formed by Inâ€Situ Transformation of Metal Phosphate for Efficient Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 1740-1740.	6.8	0
42	Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO ₄ Photoanode. ACS Catalysis, 2017, 7, 1868-1874.	11.2	151
43	Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co ₄ O ₄ Cubane Catalyst. Angewandte Chemie, 2017, 129, 7015-7019.	2.0	40
44	Highly Efficient Photoelectrochemical Water Splitting with an Immobilized Molecular Co ₄ O ₄ Cubane Catalyst. Angewandte Chemie - International Edition, 2017, 56, 6911-6915.	13.8	130
45	Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electronâ€Coupledâ€Proton Buffer. Chemistry - an Asian Journal, 2017, 12, 2666-2669.	3.3	19
46	Defective and " <i>c</i> -Disordered― <i>Hortensia</i> -like Layered MnO _{<i>x</i>} as an Efficient Electrocatalyst for Water Oxidation at Neutral pH. ACS Catalysis, 2017, 7, 6311-6322.	11.2	62
47	Electrocatalytic water oxidation by a nickel oxide film derived from a molecular precursor. Chinese Journal of Catalysis, 2017, 38, 1812-1817.	14.0	7
48	Visible-light-driven selective oxidation of benzyl alcohol and thioanisole by molecular ruthenium catalyst modified hematite. Chemical Communications, 2016, 52, 9711-9714.	4.1	35
49	Visibleâ€Lightâ€Driven Water Oxidation on a Photoanode by Supramolecular Assembly of Photosensitizer and Catalyst. ChemPlusChem, 2016, 81, 1056-1059.	2.8	28
50	Electrocatalytic water oxidation by a macrocyclic Cu(<scp>ii</scp>) complex in neutral phosphate buffer. Chemical Communications, 2016, 52, 10377-10380.	4.1	71
51	Enhanced Photocatalytic Hydrogen Production by Adsorption of an [FeFe]â€Hydrogenase Subunit Mimic on Selfâ€Assembled Membranes. European Journal of Inorganic Chemistry, 2016, 2016, 554-560.	2.0	26
52	Characterization of a trinuclear ruthenium species in catalytic water oxidation by Ru(bda)(pic) ₂ in neutral media. Chemical Communications, 2016, 52, 8619-8622.	4.1	36
53	Photocatalytic water oxidation via combination of BiVO ₄ â€"RGO and molecular cobalt catalysts. Chemical Communications, 2016, 52, 3050-3053.	4.1	42
54	An iron-based thin film as a highly efficient catalyst for electrochemical water oxidation in a carbonate electrolyte. Chemical Communications, 2016, 52, 5753-5756.	4.1	51

#	Article	IF	CITATIONS
55	Molecular complexes in water oxidation: Pre-catalysts or real catalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 71-89.	11.6	75
56	Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands. Accounts of Chemical Research, 2015, 48, 2084-2096.	15.6	255
57	Visible Light-Driven Water Oxidation Promoted by Host–Guest Interaction between Photosensitizer and Catalyst with A High Quantum Efficiency. Journal of the American Chemical Society, 2015, 137, 4332-4335.	13.7	81
58	In Situ Formation of Efficient Cobaltâ€Based Water Oxidation Catalysts from Co ²⁺ â€Containing Tungstate and Molybdate Solutions. Chemistry - an Asian Journal, 2015, 10, 2228-2233.	3.3	12
59	Efficient Electrocatalytic Water Oxidation by a Copper Oxide Thin Film in Borate Buffer. ACS Catalysis, 2015, 5, 627-630.	11.2	186
60	Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy and Environmental Science, 2015, 8, 760-775.	30.8	363
61	Photocatalytic oxidation of organic compounds in a hybrid system composed of a molecular catalyst and visible light-absorbing semiconductor. Dalton Transactions, 2015, 44, 475-479.	3.3	22
62	Photocatalytic Water Oxidation by Molecular Assemblies Based on Cobalt Catalysts. ChemSusChem, 2014, 7, 2453-2456.	6.8	43
63	Photocatalytic water oxidation at soft interfaces. Chemical Science, 2014, 5, 2683-2687.	7.4	62
64	Electrochemical and Photoelectrochemical Water Oxidation by Supported Cobalt–Oxo Cubanes. ACS Catalysis, 2014, 4, 804-809.	11.2	73
65	Homogeneous Oxidation of Water by Iron Complexes with Macrocyclic Ligands. Chemistry - an Asian Journal, 2014, 9, 1515-1518.	3.3	42
66	Chemical and photocatalytic water oxidation by mononuclear Ru catalysts. Chinese Journal of Catalysis, 2013, 34, 1489-1495.	14.0	39
67	Promoting the Activity of Catalysts for the Oxidation of Water with Bridged Dinuclear Ruthenium Complexes. Angewandte Chemie - International Edition, 2013, 52, 3398-3401.	13.8	110
68	Towards A Solar Fuel Device: Lightâ€Driven Water Oxidation Catalyzed by a Supramolecular Assembly. Angewandte Chemie - International Edition, 2012, 51, 2417-2420.	13.8	126
69	Chemical and photochemical oxidation of organic substrates by ruthenium aqua complexes with water as an oxygen source. Chemical Communications, 2011, 47, 8949.	4.1	45
70	Highly Efficient Oxidation of Water by a Molecular Catalyst Immobilized on Carbon Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 12276-12279.	13.8	193
71	Synthesis and structure of a µâ€oxo diiron(III) complex with an <i>N</i> à€pyridylmethylâ€xi>N, <i>N</i> â€bis(4â€methylbenzimidazolâ€2â€yl)amine ligand and its catalytic property for hydrocarbon oxidation. Applied Organometallic Chemistry, 2008, 22, 573-576.	3.5	7
72	Iron(III) Complexes with a Tripodal N ₃ O Ligand Containing an Internal Base as a Model for Catechol Intradiol-Cleaving Dioxygenases. Inorganic Chemistry, 2007, 46, 9364-9371.	4.0	38

#	Article	IF	CITATIONS
73	Multipleâ€Site Concerted Protonâ^'Electron Transfer in a Manganeseâ€Based Complete Functional Model for the [FeFe]â€Hydrogenase. Angewandte Chemie, 0, , .	2.0	2