
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promoting CO ₂ Electroreduction Kinetics on Atomically Dispersed Monovalent Zn ^I Sites by Rationally Engineering Protonâ€Feeding Centers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
2	Promoting CO ₂ Electroreduction Kinetics on Atomically Dispersed Monovalent Zn ^I Sites by Rationally Engineering Protonâ€Feeding Centers. Angewandte Chemie, 2022, 134, .	2.0	15
3	Efficient production of lycopene from CO2 via microbial electrosynthesis. Chemical Engineering Journal, 2022, 430, 132943.	12.7	31
4	Atomically Dispersed Zinc(I) Active Sites to Accelerate Nitrogen Reduction Kinetics for Ammonia Electrosynthesis. Advanced Materials, 2022, 34, e2103548.	21.0	99
5	Recent Advances in Manifold Exfoliated Synthesis of Twoâ€Dimensional Nonâ€precious Metalâ€Based Nanosheet Electrocatalysts for Water Splitting. Small Structures, 2022, 3, 2100153.	12.0	43
6	Accelerated Water Dissociation Kinetics By Electronâ€Enriched Cobalt Sites for Efficient Alkaline Hydrogen Evolution. Advanced Functional Materials, 2022, 32, 2109556.	14.9	64
7	Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions. Chemical Communications, 2022, 58, 2096-2111.	4.1	7
8	Promoting Electrochemical CO ₂ Reduction via Boosting Activation of Adsorbed Intermediates on Iron Singleâ€Atom Catalyst. Advanced Functional Materials, 2022, 32, .	14.9	52
9	Removal of Arsenate From Groundwater by Cathode of Bioelectrochemical System Through Microbial Electrosorption, Reduction, and Sulfuration. Frontiers in Microbiology, 2022, 13, 812991.	3.5	0
10	Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate. Chinese Journal of Chemical Engineering, 2022, 43, 116-123.	3.5	4
11	Extracellular electron transfer in electroactive anaerobic granular sludge mediated by the phenothiazine derivative. Journal of Power Sources, 2022, 527, 231212.	7.8	5
12	Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy and Environmental Science, 2022, 15, 2356-2365.	30.8	101
13	Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Frontiers of Chemical Science and Engineering, 2022, 16, 777-798.	4.4	6
14	Local Spinâ€State Tuning of Iron Singleâ€Atom Electrocatalyst by Sâ€Coordinated Doping for Kineticsâ€Boosted Ammonia Synthesis. Advanced Materials, 2022, 34, e2202240.	21.0	79
15	Bridging heterogeneous and homogeneous catalysts by ultrathin metal-polyphthalocyanine-based nanosheets from electron-coupled transalkylation delamination. Nano Energy, 2022, 98, 107297.	16.0	9
16	The inhibitory effects and underlying mechanism of high ammonia stress on sulfide-driven denitrification process. Chemosphere, 2022, 303, 135093.	8.2	1
17	Metal–Organic Frameworks with Assembled Bifunctional Microreactor for Charge Modulation and Strain Generation toward Enhanced Oxygen Electrocatalysis. ACS Nano, 2022, 16, 9523-9534.	14.6	38
18	Graphene-modified graphite paper cathode for the efficient bioelectrochemical removal of chromium. Chemical Engineering Journal, 2021, 405, 126545.	12.7	17

#	Article	IF	CITATIONS
19	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 4192-4198.	13.8	183
20	Elucidation of the Synergistic Effect of Dopants and Vacancies on Promoted Selectivity for CO ₂ Electroreduction to Formate. Advanced Materials, 2021, 33, e2005113.	21.0	95
21	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 4238-4244.	2.0	20
22	An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy, 2021, 81, 105613.	16.0	43
23	Efficient mineralization of sulfanilamide over oxygen vacancy-rich NiFe-LDH nanosheets array during electro-fenton process. Chemosphere, 2021, 268, 129272.	8.2	19
24	<i>In situ</i> identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray. Materials Horizons, 2021, 8, 556-564.	12.2	75
25	Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Letters, 2021, 13, 24.	27.0	62
26	Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Research, 2021, 14, 3188-3207.	10.4	57
27	Highly Boosted Reaction Kinetics in Carbon Dioxide Electroreduction by Surfaceâ€Introduced Electronegative Dopants. Advanced Functional Materials, 2021, 31, 2008146.	14.9	88
28	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie, 2021, 133, 9160-9167.	2.0	26
29	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie - International Edition, 2021, 60, 9078-9085.	13.8	157
30	Proton Capture Strategy for Enhancing Electrochemical CO ₂ Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**. Angewandte Chemie, 2021, 133, 12066-12072.	2.0	25
31	Alternating current enhanced bioremediation of petroleum hydrocarbon-contaminated soils. Environmental Science and Pollution Research, 2021, 28, 47562-47573.	5.3	7
32	Proton Capture Strategy for Enhancing Electrochemical CO ₂ Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**. Angewandte Chemie - International Edition, 2021, 60, 11959-11965.	13.8	144
33	Bioelectrochemical sulfate reduction enhanced nitrogen removal from industrial wastewater containing ammonia and sulfate. AICHE Journal, 2021, 67, e17309.	3.6	8
34	Bioanodeâ€driven <scp>CO₂</scp> electroreduction in a redoxâ€mediumâ€assisted system with high energy efficiency. AICHE Journal, 2021, 67, e17283.	3.6	3
35	Bimetallic Oxyhydroxide as a High-Performance Water Oxidation Electrocatalyst under Industry-Relevant Conditions. Engineering, 2021, 7, 1306-1312.	6.7	21
36	Deciphering Single-Bacterium Adhesion Behavior Modulated by Extracellular Electron Transfer. Nano Letters, 2021, 21, 5105-5115.	9.1	5

#	Article	IF	CITATIONS
37	Hierarchical Crossâ€Linked Carbon Aerogels with Transition Metalâ€Nitrogen Sites for Highly Efficient Industrialâ€Level CO ₂ Electroreduction. Advanced Functional Materials, 2021, 31, 2104377.	14.9	56
38	Stainless steel cloth modified by carbon nanoparticles of Chinese ink as scalable and high-performance anode in microbial fuel cell. Chinese Chemical Letters, 2021, 32, 2499-2502.	9.0	15
39	Synergistic Effect of Atomically Dispersed Ni–Zn Pair Sites for Enhanced CO ₂ Electroreduction. Advanced Materials, 2021, 33, e2102212.	21.0	155
40	A New Strategy for Accelerating Dynamic Proton Transfer of Electrochemical CO ₂ Reduction at High Current Densities. Advanced Functional Materials, 2021, 31, 2104243.	14.9	49
41	An integrated bioelectrochemical system coupled CO2 electroreduction device based on atomically dispersed iron electrocatalysts. Nano Energy, 2021, 87, 106187.	16.0	23
42	Immobilization of lead and cadmium in agricultural soil by bioelectrochemical reduction of sulfate in underground water. Chemical Engineering Journal, 2021, 422, 130010.	12.7	16
43	Improved NH3-N conversion efficiency to N2 activated by BDD substrate on NiCu electrocatalysis process. Separation and Purification Technology, 2021, 276, 119350.	7.9	12
44	Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization. Biotechnology for Biofuels, 2021, 14, 212.	6.2	14
45	Electrochemically assisted sulfate reduction autotrophic denitrification nitrification integrated (e-SANI®) process for high-strength ammonium industrial wastewater treatment. Chemical Engineering Journal, 2020, 381, 122707.	12.7	32
46	Atomically Defined Undercoordinated Active Sites for Highly Efficient CO ₂ Electroreduction. Advanced Functional Materials, 2020, 30, 1907658.	14.9	210
47	Nitrogen-doped carbon nanotube-encapsulated nickel nanoparticles assembled on graphene for efficient CO2 electroreduction. Chinese Chemical Letters, 2020, 31, 1438-1442.	9.0	22
48	Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. Nano Energy, 2020, 77, 105162.	16.0	134
49	Acidic Electrolytes: Highâ€Performance Metalâ€Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070210.	14.9	1
50	A Superaerophobic Bimetallic Selenides Heterostructure for Efficient Industrial-Level Oxygen Evolution at Ultra-High Current Densities. Nano-Micro Letters, 2020, 12, 104.	27.0	99
51	A Universal Principle to Accurately Synthesize Atomically Dispersed Metal–N4 Sites for CO2 Electroreduction. Nano-Micro Letters, 2020, 12, 108.	27.0	65
52	Highly Effective Electrochemical Exfoliation of Ultrathin Tantalum Disulfide Nanosheets for Energy-Efficient Hydrogen Evolution Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 24675-24682.	8.0	29
53	Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually Highâ€Efficient CO ₂ Electroreduction and Highâ€Performance Zn–CO ₂ Batteries. Advanced Materials, 2020, 32, e2002430.	21.0	141
54	Highâ€Performance Metalâ€Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid. Advanced Functional Materials, 2020, 30, 2003000.	14.9	55

#	Article	IF	CITATIONS
55	Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate. Chinese Chemical Letters, 2020, 31, 1415-1421.	9.0	51
56	Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO ₂ to Formate and C1 Products. ACS Applied Materials & Interfaces, 2020, 12, 16178-16185.	8.0	41
57	Ultrathin tin monosulfide nanosheets with the exposed (001) plane for efficient electrocatalytic conversion of CO ₂ into formate. Chemical Science, 2020, 11, 3952-3958.	7.4	55
58	Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Applied Catalysis B: Environmental, 2020, 270, 118892.	20.2	41
59	Strongly coupling of amorphous/crystalline reduced FeOOH/α-Ni(OH)2 heterostructure for extremely efficient water oxidation at ultra-high current density. Journal of Colloid and Interface Science, 2020, 579, 340-346.	9.4	29
60	Boosting alkaline hydrogen evolution and Zn–H2O cell induced by interfacial electron transfer. Nano Energy, 2020, 71, 104621.	16.0	82
61	Porous metal-porphyrin triazine-based frameworks for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2020, 270, 118908.	20.2	60
62	Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy, 2020, 74, 104850.	16.0	141
63	Kinetics and mechanism of lowâ€concentration CO ₂ adsorption on solid amine in a humid confined space. Canadian Journal of Chemical Engineering, 2019, 97, 697-701.	1.7	3
64	Nitrogen-Doped Carbon-Encased Bimetallic Selenide for High-Performance Water Electrolysis. Nano-Micro Letters, 2019, 11, 67.	27.0	67
65	Strongly Coupled 3D N-Doped MoO ₂ /Ni ₃ S ₂ Hybrid for High Current Density Hydrogen Evolution Electrocatalysis and Biomass Upgrading. ACS Applied Materials & Interfaces, 2019, 11, 27743-27750.	8.0	95
66	Nanostructured Carbon Based Heterogeneous Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 2019, 11, 5855-5874.	3.7	70
67	Single Atom Electrocatalysts: Carbonâ€Rich Nonprecious Metal Single Atom Electrocatalysts for CO ₂ Reduction and Hydrogen Evolution (Small Methods 10/2019). Small Methods, 2019, 3, 1970033.	8.6	4
68	High-index faceted binary-metal selenide nanosheet arrays as efficient 3D electrodes for alkaline hydrogen evolution. Nanoscale, 2019, 11, 17571-17578.	5.6	26
69	A strongly coupled 3D ternary Fe ₂ O ₃ @Ni ₂ P/Ni(PO ₃) ₂ hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities. Journal of Materials Chemistry A. 2019, 7, 965-971.	10.3	170
70	Electrochemical exfoliation of ultrathin ternary molybdenum sulfoselenide nanosheets to boost the energy-efficient hydrogen evolution reaction. Nanoscale, 2019, 11, 16200-16207.	5.6	25
71	Highly active metallic nickel sites confined in N-doped carbon nanotubes toward significantly enhanced activity of CO2 electroreduction. Carbon, 2019, 150, 52-59.	10.3	84
72	ZIF-Derived Carbon Nanoarchitecture as a Bifunctional pH-Universal Electrocatalyst for Energy-Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 10044-10051.	6.7	51

#	Article	IF	CITATIONS
73	Carbonâ€Rich Nonprecious Metal Single Atom Electrocatalysts for CO ₂ Reduction and Hydrogen Evolution. Small Methods, 2019, 3, 1900210.	8.6	136
74	NiCoMo Hydroxide Nanosheet Arrays Synthesized via Chloride Corrosion for Overall Water Splitting. ACS Energy Letters, 2019, 4, 952-959.	17.4	243
75	Scalable Production of Few-Layer Niobium Disulfide Nanosheets via Electrochemical Exfoliation for Energy-Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 13205-13213.	8.0	53
76	Zeolitic Imidazolate Frameworkâ€Derived Coreâ€Shellâ€Structured CoS 2 /CoS 2 â€Nâ€C Supported on Electrochemically Exfoliated Graphene Foil for Efficient Oxygen Evolution. Batteries and Supercaps, 2019, 2, 348-354.	4.7	24
77	In Situ Growth of Nitrogen-Doped Carbon-Coated γ-Fe ₂ O ₃ Nanoparticles on Carbon Fabric for Electrochemical N ₂ Fixation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8853-8859.	6.7	58
78	Confined carburization-engineered synthesis of ultrathin nickel oxide/nickel heterostructured nanosheets for enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 22261-22269.	5.6	18
79	Boron and nitrogen co-doped porous carbon nanofibers as metal-free electrocatalysts for highly efficient ammonia electrosynthesis. Journal of Materials Chemistry A, 2019, 7, 26272-26278.	10.3	66
80	Emerging nanostructured carbon-based non-precious metal electrocatalysts for selective electrochemical CO ₂ reduction to CO. Journal of Materials Chemistry A, 2019, 7, 25191-25202.	10.3	82
81	Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Materials, 2019, 1, .	6.8	21
82	Hydrogenâ€Mediated Electron Transfer in Hybrid Microbial–Inorganic Systems and Application in Energy and the Environment. Energy Technology, 2019, 7, 1800987.	3.8	28
83	Fast expansion of graphite into superior three-dimensional anode for microbial fuel cells. Journal of Power Sources, 2019, 412, 86-92.	7.8	27
84	1D SnO ₂ with Wireâ€inâ€Tube Architectures for Highly Selective Electrochemical Reduction of CO ₂ to C ₁ Products. Advanced Functional Materials, 2018, 28, 1706289.	14.9	153
85	Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells. Journal of Power Sources, 2018, 384, 86-92.	7.8	37
86	Nitrogen Vacancy Structure Driven Photoeletrocatalytic Degradation of 4-Chlorophenol Using Porous Graphitic Carbon Nitride Nanosheets. ACS Sustainable Chemistry and Engineering, 2018, 6, 6497-6506.	6.7	65
87	Highly Selective Electrochemical Conversion of CO ₂ to HCOOH on Dendritic Indium Foams. ChemElectroChem, 2018, 5, 215-215.	3.4	2
88	Effects of solids retention time on the performance and microbial community structures in membrane bioreactors treating synthetic oil refinery wastewater. Chemical Engineering Journal, 2018, 344, 462-468.	12.7	46
89	Highly Selective Electrochemical Conversion of CO ₂ to HCOOH on Dendritic Indium Foams. ChemElectroChem, 2018, 5, 253-259.	3.4	83
90	Efficient Electrocatalytic Oxygen Evolution at Extremely High Current Density over 3D Ultrasmall Zeroâ€Valent Ironâ€Coupled Nickel Sulfide Nanosheets. ChemElectroChem, 2018, 5, 3866-3872.	3.4	43

#	Article	IF	CITATIONS
91	Oxygen Evolution: FeN4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium (Adv. Energy Mater. 26/2018). Advanced Energy Materials, 2018, 8, 1870119.	19.5	3
92	An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 18877-18883.	10.3	97
93	Water Splitting–Biosynthetic Hybrid System for CO ₂ Conversion using Nickel Nanoparticles Embedded in Nâ€Doped Carbon Nanotubes. ChemSusChem, 2018, 11, 2382-2387.	6.8	36
94	FeN ₄ Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium. Advanced Energy Materials, 2018, 8, 1801912.	19.5	188
95	Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants. Chemosphere, 2018, 210, 516-523.	8.2	103
96	Bacteria-templated fabrication of a charge heterogeneous polymeric interface for highly specific bacterial recognition. Chemical Communications, 2017, 53, 2319-2322.	4.1	28
97	Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photoâ€Electrochemical Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1603904.	14.9	260
98	A laminar-flow based microfluidic microbial three-electrode cell for biosensing. Electrochimica Acta, 2016, 199, 45-50.	5.2	43
99	In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode. Bioelectrochemistry, 2016, 109, 95-100.	4.6	9
100	A p-Si/NiCoSe _x core/shell nanopillar array photocathode for enhanced photocelectrochemical hydrogen production. Energy and Environmental Science, 2016, 9, 3113-3119.	30.8	162
101	Electrochemical reduction of gaseous CO 2 with a catechol and polyethyleneimine co-deposited polypropylene membrane. Electrochemistry Communications, 2016, 71, 1-4.	4.7	10
102	Prediction of Setschenow constants of N-heteroaromatics in NaCl solutions based on the partial charge on the heterocyclic nitrogen atom. Environmental Science and Pollution Research, 2016, 23, 3399-3405.	5.3	2
103	Preferential adsorption of pentachlorophenol from chlorophenols-containing wastewater using N-doped ordered mesoporous carbon. Environmental Science and Pollution Research, 2016, 23, 1482-1491.	5.3	13
104	Measurement and ANN prediction of pH-dependent solubility of nitrogen-heterocyclic compounds. Chemosphere, 2015, 134, 402-407.	8.2	13
105	Synthesis of supported vertical NiS ₂ nanosheets for hydrogen evolution reaction in acidic and alkaline solution. RSC Advances, 2015, 5, 32976-32982.	3.6	107
106	Mn/Ti-doped carbon xerogel for efficient catalysis of microcystin-LR degradation in the water surface discharge plasma reactor. Environmental Science and Pollution Research, 2015, 22, 17202-17208.	5.3	10
107	N-doped carbon xerogels as adsorbents for the removal of heavy metal ions from aqueous solution. RSC Advances, 2015, 5, 7182-7191.	3.6	38
108	Polychlorinated Biphenyls in the Centralized Wastewater Treatment Plant in a Chemical Industry Zone: Source, Distribution, and Removal. Journal of Chemistry, 2014, 2014, 1-10.	1.9	17

#	Article	IF	CITATIONS
109	Pretreated multiwalled carbon nanotube adsorbents with amine-grafting for removal of carbon dioxide in confined spaces. RSC Advances, 2014, 4, 56224-56234.	3.6	23
110	ON/OFF states of a microbial fuel cell controlled by an optical switching system. RSC Advances, 2014, 4, 27277-27280.	3.6	23
111	Improvement of Atmospheric Water Surface Discharge with Water Resistive Barrier. Plasma Chemistry and Plasma Processing, 2013, 33, 691-705.	2.4	7
112	Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system. Bioresource Technology, 2013, 148, 9-14.	9.6	58
113	Kinetics of the Iron(II)- and Manganese(II)-Catalyzed Oxidation of S(IV) in Seawater with Acetic Buffer: A Study of Seawater Desulfurization Process. Industrial & Engineering Chemistry Research, 2013, 52, 4740-4746.	3.7	16
114	Deep Desulfurization of Fuels by Extraction with 4-Dimethylaminopyridinium-Based Ionic Liquids. Energy & Fuels, 2013, 27, 4617-4623.	5.1	40
115	A Laminarâ€Flow Microfluidic Device for Quantitative Analysis of Microbial Electrochemical Activity. ChemSusChem, 2012, 5, 1119-1123.	6.8	40
116	Bacteria-based biocomputing with Cellular Computing Circuits to sense, decide, signal, and act. Energy and Environmental Science, 2011, 4, 4907.	30.8	43
117	Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chemical Communications, 2011, 47, 3060.	4.1	115
118	Azo dye treatment with simultaneous electricity production in an anaerobic–aerobic sequential reactor and microbial fuel cell coupled system. Bioresource Technology, 2010, 101, 4440-4445.	9.6	160
119	Electricity production by an overflow-type wetted-wall microbial fuel cell. Bioresource Technology, 2009, 100, 2551-2555.	9.6	51
120	Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochemistry, 2008, 43, 1352-1358.	3.7	242
121	Studies on treatment of chlorophenol-containing wastewater by microbial fuel cell. Science Bulletin, 2007, 52, 3448-3451.	1.7	31