Feroz R Papa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4160118/publications.pdf

Version: 2024-02-01

39 papers 8,595 citations

30 h-index 289244 40 g-index

45 all docs

45 docs citations

45 times ranked

10655 citing authors

#	Article	IF	CITATIONS
1	The Unfolded Protein Response and Cell Fate Control. Molecular Cell, 2018, 69, 169-181.	9.7	1,014
2	The Role of Endoplasmic Reticulum Stress in Human Pathology. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 173-194.	22.4	967
3	IRE1α Kinase Activation Modes Control Alternate Endoribonuclease Outputs to Determine Divergent Cell Fates. Cell, 2009, 138, 562-575.	28.9	717
4	IRE1α Induces Thioredoxin-Interacting Protein to Activate the NLRP3 Inflammasome and Promote Programmed Cell Death under Irremediable ER Stress. Cell Metabolism, 2012, 16, 250-264.	16.2	707
5	IRE1α Cleaves Select microRNAs During ER Stress to Derepress Translation of Proapoptotic Caspase-2. Science, 2012, 338, 818-822.	12.6	550
6	Intracellular Signaling by the Unfolded Protein Response. Annual Review of Cell and Developmental Biology, 2006, 22, 487-508.	9.4	473
7	On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18773-18784.	7.1	465
8	The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature, 1993, 366, 313-319.	27.8	394
9	Allosteric Inhibition of the IRE1 $\hat{l}\pm$ RNase Preserves Cell Viability and Function during Endoplasmic Reticulum Stress. Cell, 2014, 158, 534-548.	28.9	384
10	Signaling cell death from the endoplasmic reticulum stress response. Current Opinion in Cell Biology, 2011, 23, 143-149.	5.4	338
11	COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nature Genetics, 2015, 47, 654-660.	21.4	302
12	Real-Time Redox Measurements during Endoplasmic Reticulum Stress Reveal Interlinked Protein Folding Functions. Cell, 2008, 135, 933-947.	28.9	270
13	Bypassing a Kinase Activity with an ATP-Competitive Drug. Science, 2003, 302, 1533-1537.	12.6	213
14	Druggable sensors of the unfolded protein response. Nature Chemical Biology, 2014, 10, 892-901.	8.0	181
15	Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors. Nature Chemical Biology, 2012, 8, 982-989.	8.0	175
16	Caspase-2 Cleavage of BID Is a Critical Apoptotic Signal Downstream of Endoplasmic Reticulum Stress. Molecular and Cellular Biology, 2008, 28, 3943-3951.	2.3	166
17	Endoplasmic Reticulum Stress, Pancreatic Â-Cell Degeneration, and Diabetes. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007666-a007666.	6.2	151
18	Targeting ABL-IRE1Î \pm Signaling Spares ER-Stressed Pancreatic Î 2 Cells to Reverse Autoimmune Diabetes. Cell Metabolism, 2017, 25, 883-897.e8.	16.2	149

#	Article	IF	CITATIONS
19	Interaction of the Doa4 Deubiquitinating Enzyme with the Yeast 26S Proteasome. Molecular Biology of the Cell, 1999, 10, 741-756.	2.1	118
20	The UPR and cell fate at a glance. Journal of Cell Science, 2010, 123, 1003-1006.	2.0	101
21	Structural and Functional Analysis of the Allosteric Inhibition of IRE1α with ATP-Competitive Ligands. ACS Chemical Biology, 2016, 11, 2195-2205.	3.4	75
22	Endoplasmic reticulum stress, degeneration of pancreatic islet \hat{l}^2 -cells, and therapeutic modulation of the unfolded protein response in diabetes. Molecular Metabolism, 2019, 27, S60-S68.	6.5	73
23	IRE1-Dependent Activation of AMPK in Response to Nitric Oxide. Molecular and Cellular Biology, 2011, 31, 4286-4297.	2.3	66
24	Small Molecules to Improve ER Proteostasis in Disease. Trends in Pharmacological Sciences, 2019, 40, 684-695.	8.7	59
25	Spontaneous Development of Endoplasmic Reticulum Stress That Can Lead to Diabetes Mellitus Is Associated with Higher Calcium-independent Phospholipase A2 Expression. Journal of Biological Chemistry, 2010, 285, 6693-6705.	3.4	54
26	Rationalizing translation attenuation in the network architecture of the unfolded protein response. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20280-20285.	7.1	51
27	Small molecule inhibition of IRE1 \hat{l}_{\pm} kinase/RNase has anti-fibrotic effects in the lung. PLoS ONE, 2019, 14, e0209824.	2.5	51
28	A kinase inhibitor activates the IRE1 \hat{l} \pm RNase to confer cytoprotection against ER stress. Biochemical and Biophysical Research Communications, 2008, 365, 777-783.	2.1	46
29	Chaperone-mediated reflux of secretory proteins to the cytosol during endoplasmic reticulum stress. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11291-11298.	7.1	36
30	Cleaved cytokeratin-18 is a mechanistically informative biomarker in idiopathic pulmonary fibrosis. Respiratory Research, 2012, 13, 105.	3.6	32
31	Parallel Signaling through IRE1 \hat{i}_{\pm} and PERK Regulates Pancreatic Neuroendocrine Tumor Growth and Survival. Cancer Research, 2019, 79, 6190-6203.	0.9	25
32	X-Box Binding Protein 1 (XBP1s) Is a Critical Determinant of Pseudomonas aeruginosa Homoserine Lactone-Mediated Apoptosis. PLoS Pathogens, 2013, 9, e1003576.	4.7	21
33	An Evolutionarily Conserved Gene on Human Chromosome 5q33–q34,UBH1,Encodes a Novel Deubiquitinating Enzyme. Genomics, 1998, 49, 411-418.	2.9	18
34	Development of a Chemical Toolset for Studying the Paralog-Specific Function of IRE1. ACS Chemical Biology, 2019, 14, 2595-2605.	3.4	16
35	Establishment of a system for monitoring endoplasmic reticulum redox state in mammalian cells. Laboratory Investigation, 2013, 93, 1254-1258.	3.7	15
36	Nicotinic acetylcholine receptor signaling regulates inositolâ€requiring enzymeÂ1α activation to protect βâ€cells against terminal unfolded protein response under irremediable endoplasmic reticulum stress. Journal of Diabetes Investigation, 2020, 11, 801-813.	2.4	12

#	Article	IF	CITATIONS
37	IRE1α drives lung epithelial progenitor dysfunction to establish a niche for pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L564-L580.	2.9	12
38	Targeting Adaptive IRE1α Signaling and PLK2 in Multiple Myeloma: Possible Anti-Tumor Mechanisms of KIRA8 and Nilotinib. International Journal of Molecular Sciences, 2020, 21, 6314.	4.1	9
39	ATP-competitive partial antagonists of the IRE1 $\hat{l}\pm$ RNase segregate outputs of the UPR. Nature Chemical Biology, 2021, 17, 1148-1156.	8.0	7