List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159897/publications.pdf Version: 2024-02-01

ALAN R RENNETT

#	Article	IF	CITATIONS
1	Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. Field Crops Research, 2022, 283, 108541.	5.1	50
2	Genomic characterization of a diazotrophic microbiota associated with maize aerial root mucilage. PLoS ONE, 2020, 15, e0239677.	2.5	13
3	Diazotrophic bacteria from maize exhibit multifaceted plant growth promotion traits in multiple hosts. PLoS ONE, 2020, 15, e0239081.	2.5	13
4	Identification of Nitrogen Fixation Genes in Lactococcus Isolated from Maize Using Population Genomics and Machine Learning. Microorganisms, 2020, 8, 2043.	3.6	15
5	A Model for Nitrogen Fixation in Cereal Crops. Trends in Plant Science, 2020, 25, 226-235.	8.8	43
6	Strategy for Structural Elucidation of Polysaccharides: Elucidation of a Maize Mucilage that Harbors Diazotrophic Bacteria. Analytical Chemistry, 2019, 91, 7254-7265.	6.5	67
7	Characterization of novel glycosyl hydrolases discovered by cell wall glycan directed monoclonal antibody screening and metagenome analysis of maize aerial root mucilage. PLoS ONE, 2018, 13, e0204525.	2.5	34
8	Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biology, 2018, 16, e2006352.	5.6	236
9	Technology transfer in the Americas: common and divergent practices among major research universities and public sector institutions. Journal of Technology Transfer, 2017, 42, 1307-1333.	4.3	32
10	Protein accumulation and rumen stability of wheat γâ€gliadin fusion proteins in tobacco and alfalfa. Plant Biotechnology Journal, 2015, 13, 974-982.	8.3	4
11	The emergence of agbiogenerics. Nature Biotechnology, 2015, 33, 819-823.	17.5	21
12	Genetically engineered crops that fly under the US regulatory radar. Nature Biotechnology, 2014, 32, 1087-1091.	17.5	56
13	Agricultural Biotechnology: Economics, Environment, Ethics, and the Future. Annual Review of Environment and Resources, 2013, 38, 249-279.	13.4	72
14	Research and adoption of biotechnology strategies could improve California fruit and nut crops. California Agriculture, 2012, 66, 62-69.	0.8	9
15	Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks. Journal of Biotechnology, 2012, 161, 349-353.	3.8	20
16	Mobility of Transgenic Nucleic Acids and Proteins within Grafted Rootstocks for Agricultural Improvement. Frontiers in Plant Science, 2012, 3, 39.	3.6	82
17	<i>Uniform ripening</i> Encodes a <i>Golden 2-like</i> Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science, 2012, 336, 1711-1715.	12.6	384
18	Taste: Unraveling Tomato Flavor. Current Biology, 2012, 22, R443-R444.	3.9	9

#	Article	IF	CITATIONS
19	An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation. Plant Biotechnology Journal, 2012, 10, 501-510.	8.3	32
20	Sidebar: Regulatory status of transgrafted plants is unclear. California Agriculture, 2012, 66, 68-69.	0.8	1
21	Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiology and Biochemistry, 2011, 49, 1244-1249.	5.8	107
22	Intellectual Property and Development of Transgenic Horticultural Crops. , 2011, , 219-231.		1
23	The intellectual property landscape for gene suppression technologies in plants. Nature Biotechnology, 2010, 28, 32-36.	17.5	18
24	Food Security: Translational Agriculture. Science, 2010, 328, 429-429.	12.6	1
25	The commercialization of biotechnology traits. Plant Science, 2010, 179, 635-644.	3.6	6
26	Ripening-Regulated Susceptibility of Tomato Fruit to <i>Botrytis cinerea</i> Requires <i>NOR</i> But Not <i>RIN</i> or Ethylene Â. Plant Physiology, 2009, 150, 1434-1449.	4.8	152
27	The contraction of agbiotech product quality innovation. Nature Biotechnology, 2009, 27, 702-704.	17.5	54
28	Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends in Plant Science, 2008, 13, 610-617.	8.8	188
29	Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. Plant Science, 2008, 175, 130-136.	3.6	126
30	The intersection between cell wall disassembly, ripening, and fruit susceptibility to <i>Botrytis cinerea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 859-864.	7.1	257
31	Structural Organization and a Standardized Nomenclature for Plant Endo-1,4- <i>β</i> -Glucanases (Cellulases) of Glycosyl Hydrolase Family 9. Plant Physiology, 2007, 144, 1693-1696.	4.8	86
32	Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. Journal of Experimental Botany, 2007, 58, 1281-1290.	4.8	177
33	Absence of the endoâ€Î²â€1,4â€glucanases Cel1 and Cel2 reduces susceptibility to <i>Botrytis cinerea</i> in tomato. Plant Journal, 2007, 52, 1027-1040.	5.7	99
34	An engineered sorbitol cycle alters sugar composition, not growth, in transformed tobacco. Plant, Cell and Environment, 2006, 29, 1980-1988.	5.7	17
35	Bayh-Dole: if we knew then what we know now. Nature Biotechnology, 2006, 24, 320-323.	17.5	65
36	QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theoretical and Applied Genetics, 2005, 111, 1396-1408.	3.6	140

#	Article	IF	CITATIONS
37	Role of a Ca2+-ATPase induced by ABA and IAA in the generation of specific Ca2+ signals. Biochemical and Biophysical Research Communications, 2005, 329, 406-415.	2.1	11
38	Characterization of tomato endo-?-1,4-glucanase Cel1 protein in fruit during ripening and after fungal infection. Planta, 2004, 220, 80-86.	3.2	15
39	Access to intellectual property is a major obstacle to developing transgenic horticultural crops. California Agriculture, 2004, 58, 120-126.	0.8	26
40	The public–private structure of intellectual property ownership in agricultural biotechnology. Nature Biotechnology, 2003, 21, 989-995.	17.5	128
41	Transgenic Overexpression of Expansin Influences Particle Size Distribution and Improves Viscosity of Tomato Juice and Paste. Journal of Agricultural and Food Chemistry, 2003, 51, 7465-7471.	5.2	26
42	Out of the Amazon: Theobroma cacao enters the genomic era. Trends in Plant Science, 2003, 8, 561-563.	8.8	29
43	Do untranslated introns control Ca2+-ATPase isoform dependence on CaM, found in TN and PM?. Biochemical and Biophysical Research Communications, 2003, 312, 1377-1382.	2.1	2
44	Simultaneous Transgenic Suppression of LePG and LeExp1 Influences Fruit Texture and Juice Viscosity in a Fresh Market Tomato Variety. Journal of Agricultural and Food Chemistry, 2003, 51, 7450-7455.	5.2	120
45	Material Transfer Agreements: A University Perspective. Plant Physiology, 2003, 133, 10-13.	4.8	32
46	Intellectual Property Resources for International Development in Agriculture. Plant Physiology, 2003, 133, 1666-1670.	4.8	42
47	Distinct Physiological Roles of Fructokinase Isozymes Revealed by Gene-Specific Suppression of Frk1 and Frk2Expression in Tomato. Plant Physiology, 2002, 129, 1119-1126.	4.8	113
48	Biochemical and Genetic Determinants of Cell Wall Disassembly in Ripening Fruit: A General Model. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 447-450.	1.0	24
49	Characterization of a Tomato Xyloglucan Endotransglycosylase Gene That Is Down-Regulated by Auxin in Etiolated Hypocotyls. Plant Physiology, 2001, 127, 1180-1192.	4.8	79
50	MIP Genes are Down-regulated Under Drought Stress in Nicotiana glauca. Plant and Cell Physiology, 2001, 42, 686-693.	3.1	134
51	Isolation of genes predominantly expressed in guard cells and epidermal cells of Nicotiana glauca. Plant Molecular Biology, 2000, 42, 857-869.	3.9	16
52	Detection of Expansin Proteins and Activity during Tomato Fruit Ontogeny. Plant Physiology, 2000, 123, 1583-1592.	4.8	124
53	Transgenic Expression of Pear PGIP in Tomato Limits Fungal Colonization. Molecular Plant-Microbe Interactions, 2000, 13, 942-950.	2.6	228
54	Characterization of Ripening-Regulated cDNAs and Their Expression in Ethylene-Suppressed Charentais Melon Fruit. Plant Physiology, 2000, 122, 977-984.	4.8	60

#	Article	IF	CITATIONS
55	Auxin-Regulated Genes Encoding Cell Wall-Modifying Proteins Are Expressed during Early Tomato Fruit Growth. Plant Physiology, 2000, 122, 527-534.	4.8	200
56	Modification of Expansin Protein Abundance in Tomato Fruit Alters Softening and Cell Wall Polymer Metabolism during Ripening. Plant Cell, 1999, 11, 2203.	6.6	7
57	Expression of a Polygalacturonase Associated with Tomato Seed Germination. Plant Physiology, 1999, 121, 419-428.	4.8	89
58	Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Molecular Biology, 1999, 40, 615-622.	3.9	150
59	Isolation of RNA and Protein from Guard Cells of Nicotiana glauca. Plant Molecular Biology Reporter, 1999, 17, 371-383.	1.8	4
60	Alternative transcription initiation sites generate two LCA1 Ca2+-ATPase mRNA transcripts in tomato roots. Plant Molecular Biology, 1999, 40, 133-140.	3.9	10
61	Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends in Plant Science, 1999, 4, 176-183.	8.8	410
62	Modification of Expansin Protein Abundance in Tomato Fruit Alters Softening and Cell Wall Polymer Metabolism during Ripening. Plant Cell, 1999, 11, 2203-2216.	6.6	439
63	An Expansin Gene Expressed in Ripening Strawberry Fruit. Plant Physiology, 1999, 121, 1273-1279.	4.8	187
64	A Gel Diffusion Assay for Quantification of Pectin Methylesterase Activity. Analytical Biochemistry, 1998, 264, 149-157.	2.4	101
65	Transgenic analysis of tomato endo-beta-1,4-glucanase gene function. Role of cel1 in floral abscission. Plant Journal, 1998, 13, 303-310.	5.7	111
66	Regulation of Tomato Fruit Polygalacturonase mRNA Accumulation by Ethylene: A Re-Examination1. Plant Physiology, 1998, 116, 1145-1150.	4.8	149
67	Polygalacturonase Gene Expression in Ripe Melon Fruit Supports a Role for Polygalacturonase in Ripening-Associated Pectin Disassembly. Plant Physiology, 1998, 117, 363-373.	4.8	138
68	Polygalacturonases: Many Genes in Search of a Function1. Plant Physiology, 1998, 117, 337-343.	4.8	364
69	Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1. Plant Physiology, 1998, 117, 345-361.	4.8	278
70	Tomato Fructokinases Exhibit Differential Expression and Substrate Regulation1. Plant Physiology, 1998, 117, 85-90.	4.8	87
71	Divergent Fructokinase Genes Are Differentially Expressed in Tomato. Plant Physiology, 1997, 113, 1379-1384.	4.8	82
72	Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5955-5960	7.1	374

#	Article	IF	CITATIONS
73	A membrane-anchored E-type endo-1,4-Â-glucanase is localized on Golgi and plasma membranes of higher plants. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4794-4799.	7.1	132
74	Programmed senescence of plant organs. Cell Death and Differentiation, 1997, 4, 662-670.	11.2	54
75	An endo-1,4-beta-glucanase expressed at high levels in rapidly expanding tissues. Plant Molecular Biology, 1997, 33, 87-95.	3.9	73
76	Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant Journal, 1997, 12, 417-426.	5.7	168
77	Antisense Acid Invertase (TIV1) Gene Alters Soluble Sugar Composition and Size in Transgenic Tomato Fruit. Plant Physiology, 1996, 112, 1321-1330.	4.8	215
78	Two Plasma Membrane H+-ATPase Genes Expressed in Guard Cells of Vicia faba Are Also Expressed Throughout the Plant. Plant and Cell Physiology, 1996, 37, 650-659.	3.1	48
79	Differential Expression of Two Endo-1,4-β-Glucanase Genes in Pericarp and Locules of Wild-Type and Mutant Tomato Fruit. Plant Physiology, 1996, 111, 1313-1319.	4.8	65
80	Pedicel Breakstrength and Cellulase Gene Expression during Tomato Flower Abscission. Plant Physiology, 1996, 111, 813-820.	4.8	164
81	Two Divergent Xyloglucan Endotransglycosylases Exhibit Mutually Exclusive Patterns of Expression in Nasturtium. Plant Physiology, 1996, 110, 493-499.	4.8	46
82	Sugar Regulates mRNA Abundance of H+-ATPase Gene Family Members in Tomato. Plant Physiology, 1996, 112, 1229-1236.	4.8	35
83	A Single Gene May Encode Differentially Localized Ca 2+ -ATPases in Tomato. Plant Cell, 1996, 8, 1159.	6.6	42
84	Exotic Germ Plasm or Engineered Genes. ACS Symposium Series, 1995, , 88-99.	0.5	2
85	In situ isolation of mRNA from individual plant cells: creation of cell-specific cDNA libraries Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 3814-3818.	7.1	194
86	Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theoretical and Applied Genetics, 1995, 91, 327-333.	3.6	67
87	Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato. Theoretical and Applied Genetics, 1995, 91, 334-339.	3.6	29
88	The diageotropica Mutation and Synthetic Auxins Differentially Affect the Expression of Auxin-Regulated Genes in Tomato. Plant Physiology, 1995, 109, 293-297.	4.8	45
89	Ascorbate Free Radical Reductase mRNA Levels Are Induced by Wounding. Plant Physiology, 1995, 108, 411-418.	4.8	91
90	The respiratory climacteric is present in Charentais (Cucumis melocv. Reticulatus F1 Alpha) melons ripened on or off the plant. Journal of Experimental Botany, 1995, 46, 1923-1925.	4.8	48

#	Article	IF	CITATIONS
91	Two Divergent Endo-b-1,4-Glucanase Genes Exhibit Overlapping Expression in Ripening Fruit and Abscising Flowers. Plant Cell, 1994, 6, 1485.	6.6	95
92	Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Plant Molecular Biology, 1994, 25, 607-617.	3.9	112
93	Plant Endo-1,4-β-D-glucanases. ACS Symposium Series, 1994, , 100-129.	0.5	42
94	Assessment of the Number and Expression of P-Type H+-ATPase Genes in Tomato. Plant Physiology, 1994, 106, 547-557.	4.8	82
95	Glycoprotein Inhibitors of Fungal Polygalacturonases. Current Plant Science and Biotechnology in Agriculture, 1994, , 399-402.	0.0	18
96	Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. Plant Journal, 1993, 4, 643-650.	5.7	34
97	Molecular Characterization of a Polygalacturonase Inhibitor from Pyrus communis L. cv Bartlett. Plant Physiology, 1993, 102, 133-138.	4.8	108
98	Expression of Acid Invertase Gene Controls Sugar Composition in Tomato (Lycopersicon) Fruit. Plant Physiology, 1993, 103, 863-870.	4.8	148
99	Higher plant Ca(2+)-ATPase: primary structure and regulation of mRNA abundance by salt Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9205-9209.	7.1	155
100	<i>In Vitro</i> Processing of Tomato Proteinase Inhibitor I by Barley Microsomal Membranes. Plant Physiology, 1992, 99, 378-382.	4.8	9
101	Tomato Fruit Acid Invertase Complementary DNA : Nucleotide and Deduced Amino Acid Sequences. Plant Physiology, 1992, 99, 351-353.	4.8	58
102	Genetic and Molecular Genetic Regulation of Soluble and Insoluble Carbohydrate Composition in Tomato. , 1992, , 149-165.		2
103	Sink Metabolism in Tomato Fruit. Plant Physiology, 1991, 95, 1026-1035.	4.8	185
104	Analysis of Tomato Polygalacturonase Expression in Transgenic Tobacco. Plant Cell, 1990, 2, 1239.	6.6	0
105	Enhanced H+ Transport Capacity and ATP Hydrolysis Activity of the Tonoplast H+-ATPase after NaCl Adaptation. Plant Physiology, 1990, 94, 524-530.	4.8	112
106	Molecular Cloning of Tomato Plasma Membrane H ⁺ -ATPase. Plant Physiology, 1990, 94, 1874-1881.	4.8	76
107	Polygalacturonase Isozymes and Pectin Depolymerization in Transgenic rin Tomato Fruit. Plant Physiology, 1990, 94, 1882-1886.	4.8	90
108	Analysis of tomato polygalacturonase expression in transgenic tobacco Plant Cell, 1990, 2, 1239-1248.	6.6	48

#	Article	IF	CITATIONS
109	A functional arginine residue in the vacuolar H+-ATPase of higher plants. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1023, 119-123.	2.6	4
110	Transcriptional Analysis of Polygalacturonase and Other Ripening Associated Genes in Rutgers, <i>rin, nor</i> , and <i>Nr</i> Tomato Fruit. Plant Physiology, 1989, 90, 1372-1377.	4.8	131
111	Regulation, maturation and function of tomato fruit polygalacturonase. , 1989, , 11-19.		1
112	Expression of a Chimeric Polygalacturonase Gene in Transgenic rin (Ripening Inhibitor) Tomato Fruit Results in Polyuronide Degradation but Not Fruit Softening. Plant Cell, 1989, 1, 53.	6.6	58
113	Sink Metabolism in Tomato Fruit. Plant Physiology, 1988, 87, 727-730.	4.8	122
114	Sink Metabolism in Tomato Fruit. Plant Physiology, 1988, 87, 737-740.	4.8	144
115	<i>In Vitro</i> Synthesis and Processing of Tomato Fruit Polygalacturonase. Plant Physiology, 1988, 86, 1057-1063.	4.8	71
116	Sink Metabolism in Tomato Fruit. Plant Physiology, 1988, 87, 731-736.	4.8	97
117	Transport Properties of the Tomato Fruit Tonoplast. Plant Physiology, 1988, 88, 1097-1103.	4.8	19
118	[44] H+-ATPase from vacuolar membranes of higher plants. Methods in Enzymology, 1988, 157, 579-590.	1.0	7
119	H+-ATPase Activity from Storage Tissue of Beta vulgaris. Plant Physiology, 1987, 83, 569-572.	4.8	17
120	Polygalacturonase Gene Expression in Rutgers, rin, nor, and Nr Tomato Fruits. Plant Physiology, 1987, 85, 502-507.	4.8	97
121	Transport Properties of the Tomato Fruit Tonoplast. Plant Physiology, 1987, 84, 997-1000.	4.8	44
122	Transport Properties of the Tomato Fruit Tonoplast. Plant Physiology, 1987, 84, 993-996.	4.8	18
123	Regulation of Climacteric Respiration in Ripening Avocado Fruit. Plant Physiology, 1987, 83, 973-976.	4.8	39
124	Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6420-6424.	7.1	217
125	Biotinylated proteins as molecular weight standards on Western blots. Analytical Biochemistry, 1986, 152, 329-332.	2.4	55
126	Synthesis and Processing of Cellulase from Ripening Avocado Fruit. Plant Physiology, 1986, 81, 830-835.	4.8	51

#	Article	IF	CITATIONS
127	H+-ATPase Activity from Storage Tissue of Beta vulgaris. Plant Physiology, 1985, 78, 495-499.	4.8	60
128	Anion-Sensitive H+-ATPases from Higher Plant Cells: The Role of Chloride in Stimulating Proton Transport. , 1985, , 175-183.		0
129	The Use of Optical Probes to Monitor the Formation of pH Gradients and Membrane Potential in Tonoplast Membrane Vesicles. , 1985, , 119-128.		Ο
130	H+-ATPase Activity from Storage Tissue of Beta vulgaris. Plant Physiology, 1984, 74, 538-544.	4.8	192
131	Sink to Source Translocation in Soybean. Plant Physiology, 1984, 74, 434-436.	4.8	34
132	Concentrations of Sucrose and Nitrogenous Compounds in the Apoplast of Developing Soybean Seed Coats and Embryos. Plant Physiology, 1984, 75, 181-186.	4.8	60
133	H+-ATPase Activity from Storage Tissue of Beta vulgaris. Plant Physiology, 1984, 74, 545-548.	4.8	93
134	Optical measurements of ΔpH and ΔÏ^ in corn root membrne vesicles: Kinetic analysis of Clâ^' effects on a proton-translocating ATPase. Journal of Membrane Biology, 1983, 71, 95-107.	2.1	185
135	Solubilization and reconstitution of an anion-sensitive H+-ATPase from corn roots. Journal of Membrane Biology, 1983, 75, 21-31.	2.1	41
136	Derepression of Amino Acid-H ⁺ Cotransport in Developing Soybean Embryos. Plant Physiology, 1983, 72, 781-786.	4.8	58
137	Characterization of a NO ₃ ^{â^²} -Sensitive H ⁺ -ATPase from Corn Roots. Plant Physiology, 1983, 72, 837-846.	4.8	140
138	Localization of a Proton-Translocating ATPase on Sucrose Gradients. Plant Physiology, 1982, 70, 1115-1119.	4.8	74
139	Leaf Closure in the Venus Flytrap: An Acid Growth Response. Science, 1982, 218, 1120-1122.	12.6	88
140	Case 5. The Public Intellectual Property Resource for Agriculture (PIPRA). A standard license public sector clearinghouse for agricultural IP. , 0, , 135-142.		2
141	Intellectual Property in Agricultural Biotechnology: Strategies for Open Access. , 0, , 325-342.		6