Karel Lacina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4159879/publications.pdf

Version: 2024-02-01

		933447	642732
27	529	10	23
papers	citations	h-index	g-index
27	27	27	800
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	State of the Art in the Field of Electronic and Bioelectronic Tongues – Towards the Analysis of Wines. Electroanalysis, 2009, 21, 2509-2520.	2.9	99
2	Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chemistry Central Journal, 2014, 8, 60.	2.6	96
3	Reaction-based Indicator displacement Assay (RIA) for the selective colorimetric and fluorometric detection of peroxynitrite. Chemical Science, 2015, 6, 2963-2967.	7.4	84
4	Various instrumental approaches for determination of organic acids in wines. Food Chemistry, 2016, 194, 432-440.	8.2	32
5	Ferroceneboronic acid for the electrochemical probing of interactions involving sugars. Electrochimica Acta, 2011, 56, 10246-10252.	5.2	29
6	Combining ferrocene, thiophene and a boronic acid: a hybrid ligand for reagentless electrochemical sensing of cis-diols. Tetrahedron Letters, 2014, 55, 3235-3238.	1.4	26
7	Reaction-based indicator displacement assay (RIA) for the colorimetric and fluorometric detection of hydrogen peroxide. Organic Chemistry Frontiers, 2017, 4, 1058-1062.	4.5	25
8	Biosensing based on electrochemical impedance spectroscopy: Influence of the often-ignored molecular charge. Electrochemistry Communications, 2018, 93, 183-186.	4.7	18
9	Interaction of ferroceneboronic acid with diols at aqueous and non-aqueous conditions - signalling and binding abilities of an electrochemical probe for saccharides. Electrochimica Acta, 2015, 153, 280-286.	5.2	14
10	Boosting of the output voltage of a galvanic cell. Electrochimica Acta, 2018, 282, 331-335.	5.2	10
11	Biosensor for determination of carboxylic acids in wines based on the inhibition of sarcosine oxidase. Mikrochimica Acta, 2010, 170, 251-256.	5.0	9
12	Elusive pKa' of aminoferrocene determined with voltammetric methods in buffered and unbuffered systems and practical aspects of such experiments. Electrochimica Acta, 2019, 318, 534-541.	5.2	9
13	Crucial factors governing the electrochemical impedance on protein-modified surfaces. Electrochimica Acta, 2021, 388, 138616.	5.2	9
14	Redoxâ€Pairâ€Defined Electrochemical Measurements: Biamperometric Setup for Elimination of Interferent Effects and for Sensing of Unstable Redox Systems. ChemElectroChem, 2016, 3, 877-882.	3.4	8
15	Blocking the Nanopores in a Layer of Nonconductive Nanoparticles: Dominant Effects Therein and Challenges for Electrochemical Impedimetric Biosensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14620-14628.	8.0	8
16	Bipolar transistor amplifier for transduction of electrochemical response to visual perception. Sensors and Actuators B: Chemical, 2015, 210, 183-189.	7.8	7
17	Ferroceneâ€Boronic Acid–Fructose Binding Based on Dualâ€Plate Generator–Collector Voltammetry and Squareâ€Wave Voltammetry. ChemElectroChem, 2015, 2, 867-871.	3.4	6
18	Selective electrocatalysis of reduced graphene oxide towards hydrogen peroxide aiming oxidases-based biosensing: Caution while interpreting. Electrochimica Acta, 2017, 223, 1-7.	5.2	6

#	Article	IF	Citations
19	Redox-dependent cytotoxicity of ferrocene derivatives and ROS-activated prodrugs based on ferrocenyliminoboronates. Journal of Inorganic Biochemistry, 2021, 224, 111561.	3.5	6
20	A novel approach to the uniform distribution of liquid in multi-channel (electrochemical) flow-through cells. Analytica Chimica Acta, 2012, 727, 41-46.	5.4	5
21	The synthesis and comparative characterization of three novel electroactive iminoboronates containing ferrocene. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2017, 148, 1953-1958.	1.8	5
22	Transistor Amplifier as an Electrochemical Transducer with Intuitive Optical Read-out: Improving Its Performance with Simple Electronic Solutions. Electrochimica Acta, 2016, 216, 147-151.	5.2	4
23	Graphene Oxide from Improved Hummers' Method: Is This Material Suitable for Reproducible Electrochemical (Bio)Sensing?. ECS Journal of Solid State Science and Technology, 2018, 7, M166-M171.	1.8	4
24	Thick nanoporous matrices of polystyrene nanoparticles and their potential for electrochemical biosensing. Electrochimica Acta, 2021, 368, 137607.	5.2	4
25	Electrochemically Facilitated Interaction of Oâ€Nucleophiles with Imine Group in Electroactive ⟨i⟩ortho⟨ i⟩â€((Ferrocenylimino)methyl)phenylboronate and Comparison with Its Regioisomers. ChemistrySelect, 2018, 3, 9641-9647.	1.5	3
26	Voltammetric characterisation of diferrocenylborinic acid in organic solution and in aqueous media when immobilised into a titanate nanosheet film. Dalton Transactions, 2019, 48, 11200-11207.	3.3	2
27	Unexpected reactivity of ferrocenyl-iminoboronates: Breaking ortho-imine bonds by oxidation in the presence of non-aqueous sodium chloride. Tetrahedron Letters, 2020, 61, 151535.	1.4	1