Sébastien Wälchli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/415910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. , 2022, 10, e002500.		19
2	CARâ€Ts: new perspectives in cancer therapy. FEBS Letters, 2022, 596, 403-416.	2.8	16
3	In vivo experimental mouse model to test CD19CAR T cells generated with different methods. Methods in Cell Biology, 2022, 167, 149-161.	1.1	3
4	How CAR T Cells Breathe. Cells, 2022, 11, 1454.	4.1	4
5	Targeting Telomerase with an HLA Class II-Restricted TCR for Cancer Immunotherapy. Molecular Therapy, 2021, 29, 1199-1213.	8.2	16
6	Combinatorial CAR design improves target restriction. Journal of Biological Chemistry, 2021, 296, 100116.	3.4	7
7	Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncolmmunology, 2021, 10, 1936757.	4.6	10
8	Id2 Represses Aldosterone-Stimulated Cardiac T-Type Calcium Channels Expression. International Journal of Molecular Sciences, 2021, 22, 3561.	4.1	4
9	Pharmacologic Control of CAR T Cells. International Journal of Molecular Sciences, 2021, 22, 4320.	4.1	9
10	"Builtâ€in―PDâ€1 blocker to rescue NKâ€92 activity from PDâ€11–mediated tumor escape mechanisms. F Journal, 2021, 35, e21750.	ASEB 0.5	5
11	Rab7b regulates dendritic cell migration by linking lysosomes to the actomyosin cytoskeleton. Journal of Cell Science, 2021, 134, .	2.0	14
12	Long-term surviving cancer patients as a source of therapeutic TCR. Cancer Immunology, Immunotherapy, 2020, 69, 859-865.	4.2	16
13	T cell receptor therapy against melanoma—Immunotherapy for the future?. Scandinavian Journal of Immunology, 2020, 92, e12927.	2.7	8
14	Colorectal cysts as a validating tool for CAR therapy. BMC Biotechnology, 2020, 20, 30.	3.3	3
15	SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scandinavian Journal of Immunology, 2020, 92, e12917.	2.7	5
16	Sympathetic improvement of cancer vaccine efficacy. Human Vaccines and Immunotherapeutics, 2020, 16, 1888-1890.	3.3	2
17	Gene Editing in B-Lymphoma Cell Lines Using CRISPR/Cas9 Technology. Methods in Molecular Biology, 2020, 2115, 445-454.	0.9	4
18	Next Generation of Adoptive T Cell Therapy Using CRISPR/Cas9 Technology: Universal or Boosted?. Methods in Molecular Biology, 2020, 2115, 407-417.	0.9	1

SéBASTIEN WÃ**¤**CHLI

#	Article	IF	CITATIONS
19	Treating osteosarcoma with CAR T cells. Scandinavian Journal of Immunology, 2019, 89, e12741.	2.7	36
20	NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine, 2019, 40, 106-117.	6.1	56
21	TIGIT and PD-1 Mark Intratumoral T Cells with Reduced Effector Function in B-cell Non-Hodgkin Lymphoma. Cancer Immunology Research, 2019, 7, 355-362.	3.4	82
22	Preclinical assessment of transiently TCR redirected T cells for solid tumour immunotherapy. Cancer Immunology, Immunotherapy, 2019, 68, 1235-1243.	4.2	11
23	Chimeric antigen receptor preparation from hybridoma to T-cell expression. Antibody Therapeutics, 2019, 2, 56-63.	1.9	5
24	Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. Blood Advances, 2019, 3, 1230-1243.	5.2	43
25	Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy. Npj Breast Cancer, 2019, 5, 13.	5.2	78
26	Antigen-delivery through invariant chain (CD74) boosts CD8 and CD4 T cell immunity. Oncolmmunology, 2019, 8, 1558663.	4.6	20
27	Abstract A035: Combinatorial IGK-CD19 CAR primarily targets IgK+ malignant B-cells and is less prone to serum IgG inhibition. , 2019, , .		0
28	Abstract 1422: Preclinical development of CD37CAR T-cell therapy for treatment of B-cell lymphoma. , 2019, , .		0
29	Abstract 2318: Combinatorial IGK-CD19 CAR primarily targets IgK+ malignant B-cells and is less prone to serum IgG inhibition. , 2019, , .		0
30	Human c-SRC kinase (CSK) overexpression makes T cells dummy. Cancer Immunology, Immunotherapy, 2018, 67, 525-536.	4.2	8
31	Artesunate shows potent anti-tumor activity in B-cell lymphoma. Journal of Hematology and Oncology, 2018, 11, 23.	17.0	67
32	A Spheroid Killing Assay by CAR T Cells. Journal of Visualized Experiments, 2018, , .	0.3	17
33	Breadth and Dynamics of HLA-A2– and HLA-B7–Restricted CD8+ T Cell Responses against Nonstructural Viral Proteins in Acute Human Tick-Borne Encephalitis Virus Infection. ImmunoHorizons, 2018, 2, 172-184.	1.8	15
34	Abstract 3586: A universal killer T-cell for adoptive cell therapy of cancer. , 2018, , .		0
35	T cell therapy targeting a public neoantigen in microsatellite instable colon cancer reduces <i>in vivo</i> tumor growth. Oncolmmunology, 2017, 6, e1302631.	4.6	57
36	Distinct patterns of B-cell receptor signaling in non-Hodgkin lymphomas identified by single-cell profiling. Blood, 2017, 129, 759-770.	1.4	69

~			
C1@-		\ \ \ A mo	
SACR	ASTIEN	M/ADCHI	
	AJILN	VV/ VECTIL	

#	Article	IF	CITATIONS
37	A TCR-based Chimeric Antigen Receptor. Scientific Reports, 2017, 7, 10713.	3.3	76
38	Abstract 3773: Tapping CD4 T cells for cancer immunotherapy. , 2017, , .		1
39	BMP-7 induces apoptosis in human germinal center B cells and is influenced by TGF-β receptor type I ALK5. PLoS ONE, 2017, 12, e0177188.	2.5	23
40	Fishing therapeutic T-cell receptors in healthy donor blood, is safety predictable?. Translational Cancer Research, 2017, 6, S622-S624.	1.0	0
41	Enhancing Antitumor Immune Responses by Optimized Combinations of Cell-penetrating Peptide-based Vaccines and Adjuvants. Molecular Therapy, 2016, 24, 1675-1685.	8.2	29
42	T-helper cell receptors from long-term survivors after telomerase cancer vaccination for use in adoptive cell therapy. OncoImmunology, 2016, 5, e1249090.	4.6	16
43	Targeting B-cell neoplasia with T-cell receptors recognizing a CD20-derived peptide on patient-specific HLA. Oncolmmunology, 2016, 5, e1138199.	4.6	6
44	Deciphering the Nongenomic, Mitochondrial Toxicity of Tamoxifens As Determined by Cell Metabolism and Redox Activity. ACS Chemical Biology, 2016, 11, 251-262.	3.4	10
45	Abstract 2310: With a little help from CD4 T cells in adoptive T-cell transfer. , 2016, , .		0
46	Soluble T-Cell Receptors Produced in Human Cells for Targeted Delivery. PLoS ONE, 2015, 10, e0119559.	2.5	29
47	Unpredicted phenotypes of two mutants of the TcR DMF5. Journal of Immunological Methods, 2015, 425, 37-44.	1.4	3
48	Abstract 3146: T cell therapy targeting a neoantigen reducesin vivotumour growth. , 2015, , .		0
49	Invariant chain as a vehicle to load antigenic peptides on human MHC class I for cytotoxic Tâ€cell activation. European Journal of Immunology, 2014, 44, 774-784.	2.9	20
50	Alloreactive cytotoxic T cells provide means to decipher the immunopeptidome and reveal a plethora of tumor-associated self-epitopes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 403-408.	7.1	40
51	BiP Negatively Affects Ricin Transport. Toxins, 2013, 5, 969-982.	3.4	9
52	Nuclear Import of Exogenous <scp>FGF</scp> 1 Requires the <scp>ER</scp> â€Protein <scp>LRRC</scp> 59 and the Importins <scp>Kpn</scp> î±1 and <scp>Kpn</scp> î²1. Traffic, 2012, 13, 650-664.	2.7	50
53	Invariant chain as a tool to load antigenic peptides on MHC class I. Molecular Immunology, 2012, 51, 16.	2.2	0
54	T cells raised against allogeneic HLAâ€A2/CD20 kill primary follicular lymphoma and acute lymphoblastic leukemia cells. International Journal of Cancer, 2012, 130, 1821-1832.	5.1	8

SéBASTIEN WÃ**¤**CHLI

#	Article	IF	CITATIONS
55	Role of Smad Proteins in Resistance to BMP-Induced Growth Inhibition in B-Cell Lymphoma. PLoS ONE, 2012, 7, e46117.	2.5	18
56	Transiently redirected T cells for adoptive transfer. Cytotherapy, 2011, 13, 629-640.	0.7	58
57	A single point mutation in ricin A-chain increases toxin degradation and inhibits EDEM1-dependent ER retrotranslocation. Biochemical Journal, 2011, 436, 371-385.	3.7	32
58	A Practical Approach to T-Cell Receptor Cloning and Expression. PLoS ONE, 2011, 6, e27930.	2.5	45
59	Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif. Leukemia, 2010, 24, 1901-1909.	7.2	22
60	Splice variants of Enigma homolog, differentially expressed during heart development, promote or prevent hypertrophy. Cardiovascular Research, 2010, 86, 374-382.	3.8	42
61	β-catenin is involved in N-cadherin–dependent adhesion, but not in canonical Wnt signaling in E2A-PBX1–positive B acute lymphoblastic leukemia cells. Experimental Hematology, 2009, 37, 225-233.	0.4	35
62	Characterization of clathrin and Syk interaction upon Shiga toxin binding. Cellular Signalling, 2009, 21, 1161-1168.	3.6	21
63	Dendritic Cells Engineered to Express Defined Alloâ€HLA Peptide Complexes Induce Antigenâ€specific Cytotoxic T Cells Efficiently Killing Tumour Cells. Scandinavian Journal of Immunology, 2009, 69, 319-328.	2.7	19
64	Glycosphingolipid Requirements for Endosomeâ€ŧoâ€Golgi Transport of Shiga Toxin. Traffic, 2009, 10, 868-882.	2.7	60
65	β-arrestins attenuate p38-mediated endosome to Golgi transport. Cellular Microbiology, 2009, 11, 796-807.	2.1	15
66	SNX4 in Complex with Clathrin and Dynein: Implications for Endosome Movement. PLoS ONE, 2009, 4, e5935.	2.5	36
67	The Mitogen-activated Protein Kinase p38 Links Shiga Toxin-dependent Signaling and Trafficking. Molecular Biology of the Cell, 2008, 19, 95-104.	2.1	52
68	Enigma homolog 1 scaffolds protein kinase D1 to regulate the activity of the cardiac L-type voltage-gated calcium channel. Cardiovascular Research, 2008, 78, 458-465.	3.8	34
69	Phosphorylation of Fibroblast Growth Factor (FGF) Receptor 1 at Ser777 by p38 Mitogen-Activated Protein Kinase Regulates Translocation of Exogenous FGF1 to the Cytosol and Nucleus. Molecular and Cellular Biology, 2008, 28, 4129-4141.	2.3	53
70	Vector-based delivery of siRNAs: In vitro and in vivo challenges. Frontiers in Bioscience - Landmark, 2008, Volume, 3488.	3.0	13
71	Protein Kinase Cδ Is Activated by Shiga Toxin and Regulates Its Transport. Journal of Biological Chemistry, 2007, 282, 16317-16328.	3.4	51
72	Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochemical and Biophysical Research Communications, 2007, 361, 605-610.	2.1	64

SéBASTIEN WÃ₽CHLI

#	Article	IF	CITATIONS
73	Phosphoinositide-Regulated Retrograde Transport of Ricin: Crosstalk Between hVps34 and Sorting Nexins. Traffic, 2007, 8, 297-309.	2.7	57
74	Transport of Ricin from Endosomes to the Golgi Apparatus is Regulated by Rab6A and Rab6A′. Traffic, 2006, 7, 663-672.	2.7	72
75	Transcriptional targeting of small interfering RNAs into cancer cells. Biochemical and Biophysical Research Communications, 2006, 350, 854-859.	2.1	21
76	EDEM Is Involved in Retrotranslocation of Ricin from the Endoplasmic Reticulum to the Cytosol. Molecular Biology of the Cell, 2006, 17, 1664-1675.	2.1	73
77	The ESCRT-III Subunit hVps24 Is Required for Degradation but Not Silencing of the Epidermal Growth Factor Receptor. Molecular Biology of the Cell, 2006, 17, 2513-2523.	2.1	159
78	Shiga Toxin Regulates Its Entry in a Syk-dependent Manner. Molecular Biology of the Cell, 2006, 17, 1096-1109.	2.1	77
79	Golgi Vesiculation Induced by Cholesterol Occurs by a Dynamin- and cPLA2-Dependent Mechanism. Traffic, 2005, 6, 144-156.	2.7	54
80	Strategies for the Design of Random siRNA Libraries and the Selection of anti-GFP siRNAs. , 2005, 309, 083-092.		3
81	Sap-1/PTPRH activity is regulated by reversible dimerization. Biochemical and Biophysical Research Communications, 2005, 331, 497-502.	2.1	39
82	Reconstitution of active diphtheria toxin based on a hexahistidine tagged version of the B-fragment produced to high yields in bacteria. Toxicon, 2005, 46, 900-906.	1.6	3
83	The Disulfide Isomerase Grp58 Is a Protective Factor against Prion Neurotoxicity. Journal of Neuroscience, 2005, 25, 2793-2802.	3.6	190
84	Probing Protein-tyrosine Phosphatase Substrate Specificity Using a Phosphotyrosine-containing Phage Library. Journal of Biological Chemistry, 2004, 279, 311-318.	3.4	42
85	PTPH1 Is a Predominant Protein-tyrosine Phosphatase Capable of Interacting with and Dephosphorylating the T Cell Receptor ζ Subunit. Journal of Biological Chemistry, 2004, 279, 7760-7769.	3.4	62
86	Mapping of Synergistic Components of Weakly Interacting Protein-Protein Motifs Using Arrays of Paired Peptides. Journal of Biological Chemistry, 2003, 278, 15162-15167.	3.4	38
87	Identification of Protein Tyrosine Phosphatases with Specificity for the Ligand-Activated Growth Hormone Receptor. Molecular Endocrinology, 2003, 17, 2228-2239.	3.7	63
88	Protein tyrosine phosphatases as drug targets: PTP1B and beyond. Expert Opinion on Therapeutic Targets, 2002, 6, 637-647.	3.4	12
89	Pulling Strings Below the Surface: Hormone Receptor Signaling Through Inhibition of Protein Tyrosine Phosphatases. Endocrine, 2001, 15, 019-028.	2.2	17
90	Pulling Strings Below the Surface: Hormone Receptor Signaling Through Inhibition of Protein Tyrosine Phosphatases. Endocrine, 2001, 15, S19-S28.	2.2	0

#	Article	IF	CITATIONS
91	Identification of Tyrosine Phosphatases That Dephosphorylate the Insulin Receptor. Journal of Biological Chemistry, 2000, 275, 9792-9796.	3.4	153
92	MetaBlasts: tracing protein tyrosine phosphatase gene family roots from Man to Drosophila melanogaster and Caenorhabditis elegans genomes. Gene, 2000, 253, 137-143.	2.2	23