
Brandy M Toner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4158476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consistent mineral-associated organic carbon chemistry with variable erosion rates in a mountainous landscape. Geoderma, 2022, 405, 115448.	5.1	2
2	Role of Ester Sulfate and Organic Disulfide in Mercury Methylation in Peatland Soils. Environmental Science & Technology, 2022, 56, 1433-1444.	10.0	15
3	Water and Rock Chemistry Inform Our Understanding of the Deep Biosphere: Case Study in an Archaean Banded Iron Formation. Frontiers in Earth Science, 2022, 10, .	1.8	0
4	A multi-modal approach to measuring particulate iron speciation in buoyant hydrothermal plumes. Chemical Geology, 2021, 560, 120018.	3.3	4
5	Novel Microbial Groups Drive Productivity in an Archean Iron Formation. Frontiers in Microbiology, 2021, 12, 627595.	3.5	12
6	Dynamic Biogeochemistry of the Particulate Sulfur Pool in a Buoyant Deep-Sea Hydrothermal Plume. ACS Earth and Space Chemistry, 2020, 4, 168-182.	2.7	9
7	Diagnostic Morphology and Solid-State Chemical Speciation of Hydrothermally Derived Particulate Fe in a Long-Range Dispersing Plume. ACS Earth and Space Chemistry, 2020, 4, 1831-1842.	2.7	7
8	Gammaproteobacteria mediating utilization of methyl-, sulfur- and petroleum organic compounds in deep ocean hydrothermal plumes. ISME Journal, 2020, 14, 3136-3148.	9.8	36
9	Large nickel isotope fractionation caused by surface complexation reactions with hexagonal birnessite. Chemical Geology, 2020, 537, 119481.	3.3	22
10	Mineral vs. organic matter supply as a limiting factor for the formation of mineral-associated organic matter in forest and agricultural soils. Science of the Total Environment, 2019, 692, 344-353.	8.0	10
11	Long-term agricultural management and erosion change soil organic matter chemistry and association with minerals. Science of the Total Environment, 2019, 648, 1500-1510.	8.0	16
12	Forms and distribution of Ce in a ferromanganese nodule. Marine Chemistry, 2018, 202, 58-66.	2.3	14
13	Variable Ni isotope fractionation between Fe-oxyhydroxides and implications for the use of Ni isotopes as geochemical tracers. Chemical Geology, 2018, 481, 38-52.	3.3	47
14	Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15°S. Marine Chemistry, 2018, 201, 183-197.	2.3	27
15	Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. Geochimica Et Cosmochimica Acta, 2018, 220, 449-482.	3.9	51
16	Redox potential as a master variable controlling pathways of metal reduction by <i>Geobacter sulfurreducens</i> . ISME Journal, 2017, 11, 741-752.	9.8	145
17	<i>Inâ€situ</i> incubation of ironâ€sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role for <i>Thiomicrospira</i> . Environmental Microbiology, 2017, 19, 1322-1337.	3.8	54
18	Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nature Geoscience, 2017, 10, 195-201.	12.9	204

Brandy M Toner

#	Article	IF	CITATIONS
19	Solid-phase arsenic speciation in aquifer sediments: A micro-X-ray absorption spectroscopy approach for quantifying trace-level speciation. Geochimica Et Cosmochimica Acta, 2017, 211, 228-255.	3.9	34
20	Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation. Geochimica Et Cosmochimica Acta, 2017, 211, 174-193.	3.9	64
21	Accessible reactive surface area and abiotic redox reactivity of iron oxyhydroxides in acidic brines. Geochimica Et Cosmochimica Acta, 2017, 197, 345-355.	3.9	11
22	Temperature and Redox Effect on Mineral Colonization in Juan de Fuca Ridge Flank Subsurface Crustal Fluids. Frontiers in Microbiology, 2016, 7, 396.	3.5	19
23	Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and Î'57/54Fe Observations. Frontiers in Microbiology, 2016, 7, 648.	3.5	20
24	Assessing Marine Microbial Induced Corrosion at Santa Catalina Island, California. Frontiers in Microbiology, 2016, 7, 1679.	3.5	37
25	Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N. Chemical Geology, 2016, 441, 212-234.	3.3	53
26	Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments. Accounts of Chemical Research, 2016, 49, 128-137.	15.6	21
27	Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME Journal, 2015, 9, 1857-1869.	9.8	52
28	Bacillus rigiliprofundi sp. nov., an endospore-forming, Mn-oxidizing, moderately halophilic bacterium isolated from deep subseafloor basaltic crust. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1992-1998.	1.7	32
29	Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma. Geochimica Et Cosmochimica Acta, 2015, 171, 61-79.	3.9	32
30	Carbon adsorption onto <scp>F</scp> e oxyhydroxide stalks produced by a lithotrophic ironâ€oxidizing bacteria. Geobiology, 2014, 12, 146-156.	2.4	32
31	A large volume particulate and water multi-sampler with in situ preservation for microbial and biogeochemical studies. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 94, 195-206.	1.4	49
32	Sulfur Oxidation Genes in Diverse Deep-Sea Viruses. Science, 2014, 344, 757-760.	12.6	223
33	Local Structure and Speciation of Platinum in Fresh and Road-Aged North American Sourced Vehicle Emissions Catalysts: An X-ray Absorption Spectroscopic Study. Environmental Science & Technology, 2014, 48, 3658-3665.	10.0	12
34	Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nature Communications, 2014, 5, 3192.	12.8	75
35	Scaling up: fulfilling the promise of X-ray microprobe for biogeochemical research. Environmental Chemistry, 2014, 11, 4.	1.5	14
36	Mineralogy Drives Bacterial Biogeography of Hydrothermally Inactive Seafloor Sulfide Deposits. Geomicrobiology Journal, 2013, 30, 313-326.	2.0	52

Brandy M Toner

#	Article	IF	CITATIONS
37	Microscale Characterization of Sulfur Speciation in Lake Sediments. Environmental Science & Technology, 2013, 47, 1287-1296.	10.0	64
38	Low Temperature Geomicrobiology Follows Host Rock Composition Along a Geochemical Gradient in Lau Basin. Frontiers in Microbiology, 2013, 4, 61.	3.5	45
39	Mineralogy of Iron Microbial Mats from Loihi Seamount. Frontiers in Microbiology, 2012, 3, 118.	3.5	79
40	Life and Death of Deep-Sea Vents: Bacterial Diversity and Ecosystem Succession on Inactive Hydrothermal Sulfides. MBio, 2012, 3, e00279-11.	4.1	136
41	Chemical Speciation of Vanadium in Particulate Matter Emitted from Diesel Vehicles and Urban Atmospheric Aerosols. Environmental Science & Technology, 2012, 46, 189-195.	10.0	116
42	Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50′N East Pacific Rise. Geochimica Et Cosmochimica Acta, 2012, 88, 216-236.	3.9	84
43	Measuring the Form of Iron in Hydrothermal Plume Particles. Oceanography, 2012, 25, 209-212.	1.0	43
44	Biogeochemical Processes at Hydrothermal Vents: Microbes and Minerals, Bioenergetics, and Carbon Fluxes. Oceanography, 2012, 25, 196-208.	1.0	55
45	Colonization of subsurface microbial observatories deployed in young ocean crust. ISME Journal, 2011, 5, 692-703.	9.8	155
46	Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME Journal, 2011, 5, 1748-1758.	9.8	97
47	Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geoscience, 2009, 2, 197-201.	12.9	200
48	A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 1579-1589.	1.4	52
49	Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge. Geochimica Et Cosmochimica Acta, 2009, 73, 388-403.	3.9	150
50	Structural model for the biogenic Mn oxide produced by Pseudomonas putida. American Mineralogist, 2006, 91, 489-502.	1.9	288
51	Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm. Geochimica Et Cosmochimica Acta, 2006, 70, 27-43.	3.9	177
52	Spatially Resolved Characterization of Biogenic Manganese Oxide Production within a Bacterial Biofilm. Applied and Environmental Microbiology, 2005, 71, 1300-1310.	3.1	136
53	Reductive Dissolution of Biogenic Manganese Oxides in the Presence of a Hydrated Biofilm. Geomicrobiology Journal, 2005, 22, 171-180.	2.0	12
54	Zinc Sorption by a Bacterial Biofilm. Environmental Science & Technology, 2005, 39, 8288-8294.	10.0	105

#	Article	IF	CITATIONS
55	Characterization of the manganese oxide produced by pseudomonas putida strain MnB1. Geochimica Et Cosmochimica Acta, 2003, 67, 2649-2662.	3.9	558