
John H Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4158299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dysmyelination Revealed through MRI as Increased Radial (but Unchanged Axial) Diffusion of Water. NeuroImage, 2002, 17, 1429-1436.	4.2	2,301
2	Abnormal Development of Peripheral Lymphoid Organs in Mice Deficient in Lymphotoxin. Science, 1994, 264, 703-707.	12.6	930
3	LYMPHOCYTE-MEDIATEDCYTOTOXICITY. Annual Review of Immunology, 2002, 20, 323-370.	21.8	919
4	Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell, 1994, 76, 977-987.	28.9	807
5	BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature Immunology, 2003, 4, 670-679.	14.5	768
6	Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature, 1988, 336, 73-76.	27.8	694
7	The AP-1 transcription factor Batf controls TH17 differentiation. Nature, 2009, 460, 405-409.	27.8	524
8	Activation-induced death of mature T cells in the regulation of immune responses. Current Opinion in Immunology, 1995, 7, 382-388.	5.5	493
9	Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature, 1988, 335, 271-274.	27.8	476
10	Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magnetic Resonance in Medicine, 2007, 57, 688-695.	3.0	355
11	Internal Disintegration Model of Cytotoxic Lymphocyte-Induced Target Damage. Immunological Reviews, 1983, 72, 97-118.	6.0	230
12	Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiology of Disease, 2006, 21, 626-632.	4.4	220
13	Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5679-5683.	7.1	217
14	CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. Journal of Experimental Medicine, 2011, 208, 327-339.	8.5	194
15	Axonal injury detected by <i>in vivo</i> diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR in Biomedicine, 2008, 21, 589-597.	2.8	172
16	Regional CNS responses to IFN-Î ³ determine lesion localization patterns during EAE pathogenesis. Journal of Experimental Medicine, 2008, 205, 2633-2642.	8.5	152
17	Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nature Communications, 2014, 5, 3551.	12.8	152
18	Autoimmune gld mutation uncouples suicide and cytokine/proliferation pathways in activated, mature T cells. European Journal of Immunology, 1993, 23, 2379-2382.	2.9	145

JOHN H RUSSELL

#	Article	IF	CITATIONS
19	Dual Role for Fas Ligand in the Initiation of and Recovery from Experimental Allergic Encephalomyelitis. Journal of Experimental Medicine, 1999, 189, 1195-1205.	8.5	133
20	TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. Journal of Neuroimmunology, 2004, 151, 116-125.	2.3	111
21	Batf3-Dependent CD11blow/â^ Peripheral Dendritic Cells Are GM-CSF-Independent and Are Not Required for Th Cell Priming after Subcutaneous Immunization. PLoS ONE, 2011, 6, e25660.	2.5	102
22	Immune System Dysfunction and Autoimmune Disease in Mice Lacking Emk (Par-1) Protein Kinase. Molecular and Cellular Biology, 2001, 21, 3206-3219.	2.3	86
23	B Cell Antigen Presentation Is Sufficient To Drive Neuroinflammation in an Animal Model of Multiple Sclerosis. Journal of Immunology, 2015, 194, 5077-5084.	0.8	83
24	IL-1–induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. Journal of Experimental Medicine, 2016, 213, 251-271.	8.5	81
25	Granzyme B Plays a Critical Role in Cytotoxic Lymphocyte-induced Apoptosis. Immunological Reviews, 1995, 146, 211-221.	6.0	69
26	Targeted Knock-In Mice Expressing Mutations of CD28 Reveal an Essential Pathway for Costimulation. Molecular and Cellular Biology, 2009, 29, 3710-3721.	2.3	69
27	Maternal-fetal tolerance is maintained despite transgene-driven trophoblast expression of MHC class I, and defects in Fas and its ligand. European Journal of Immunology, 1998, 28, 3479-3487.	2.9	63
28	Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. European Journal of Immunology, 2005, 35, 1076-1085.	2.9	61
29	Induction of sensitivity to activation-induced death in primary CD4+ cells: A role for interleukin-2 in the negative regulation of responses by mature CD4+ T cells. European Journal of Immunology, 1996, 26, 2263-2270.	2.9	56
30	Role of the Immune Response in Interstitial Cystitis. Clinical Immunology and Immunopathology, 1995, 74, 209-216.	2.0	55
31	Sensitivity of T cells to anti-CD3-stimulated suicide is independent of functional phenotype. European Journal of Immunology, 1992, 22, 1655-1658.	2.9	53
32	Role of Fas–FasL interactions in the pathogenesis and regulation of autoimmune demyelinating disease. Journal of Neuroimmunology, 1999, 100, 42-52.	2.3	51
33	Host T Cells Are the Main Producers of IL-17 within the Central Nervous System during Initiation of Experimental Autoimmune Encephalomyelitis Induced by Adoptive Transfer of Th1 Cell Lines. Journal of Immunology, 2008, 180, 8066-8072.	0.8	51
34	A Tumor Necrosis Factor Receptor 1-Dependent Conversation between Central Nervous System-Specific T Cells and the Central Nervous System Is Required for Inflammatory Infiltration of the Spinal Cord. American Journal of Pathology, 2006, 168, 1200-1209.	3.8	49
35	Quantitation of the Cell Surface Level of Ld Resulting in Positive Versus Negative Selection of the 2C Transgenic T Cell Receptor In Vivo. Immunity, 1997, 7, 233-241.	14.3	46
36	Agonist antibody and Fas ligand mediate different sensitivity to death in the signaling pathways of Fas and cytoplasmic mutants. European Journal of Immunology, 1997, 27, 1108-1114.	2.9	41

JOHN H RUSSELL

#	Article	IF	CITATIONS
37	Regulation and Phenotype of an Innate Th1 Cell: Role of Cytokines and the p38 Kinase Pathway. Journal of Immunology, 2003, 171, 6112-6118.	0.8	40
38	IL-12 enhances IL-2 function by inducing CD25 expression through a p38 mitogen-activated protein kinase pathway. European Journal of Immunology, 2000, 30, 1445-1452.	2.9	38
39	Astrocyteâ€ī cell crosstalk regulates regionâ€specific neuroinflammation. Glia, 2020, 68, 1361-1374.	4.9	36
40	The role of Fas ligand in vivo as a cause and regulator of pathogenesis. Current Opinion in Immunology, 2000, 12, 330-335.	5.5	33
41	The regulation of FasL expression during activation-induced cell death (AICD). Immunology, 2001, 103, 426-434.	4.4	32
42	Defective Apoptosis in Lymphocytes and the Role of IL-2 in Autoimmune Hematologic Cytopenias. Clinical Immunology, 2001, 99, 266-275.	3.2	29
43	Macrophage apoptosis in the absence of active interleukin-1β-converting enzyme. Journal of Leukocyte Biology, 1995, 58, 717-724.	3.3	26
44	Mechanisms Responsible for Granzyme B–Independent Cytotoxicity. Blood, 1997, 89, 4085-4091.	1.4	22
45	Region-specific regulation of inflammation and pathogenesis in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2006, 181, 122-132.	2.3	22
46	Partial Signaling by Cytokines: Cytokine Regulation of Cell Cycle and Fas-Dependent, Activation-Induced Death in CD4+Subsets. Cellular Immunology, 1997, 182, 152-160.	3.0	19
47	Genetic control of cross-reactive cytotoxic T-lymphocyte responses to a BALB/c tumor. Immunogenetics, 1981, 14, 263-272.	2.4	17
48	ITAM signaling in dendritic cells controls T helper cell priming by regulating MHC class II recycling. Blood, 2010, 116, 3208-3218.	1.4	17
49	B cells are capable of independently eliciting rapid reactivation of encephalitogenic CD4 T cells in a murine model of multiple sclerosis. PLoS ONE, 2018, 13, e0199694.	2.5	17
50	Apoptotic death of lymphocytes in murine acquired immunodeficiency syndrome: Involvement of Fas-Fas ligand interaction. European Journal of Immunology, 1995, 25, 2421-2427.	2.9	16
51	Encephalitogenic T-cells increase numbers of CNS T-cells regardless of antigen specificity by both increasing T-cell entry and preventing egress. Journal of Neuroimmunology, 2010, 220, 10-16.	2.3	14
52	Genetic control of pathogenic mechanisms in autoimmune demyelinating disease. Journal of Neuroimmunology, 2000, 110, 168-176.	2.3	12
53	Detachment and Lysis of Adherent Target Cells by CD4+ T Cell Clones Involve Multiple Effector Mechanisms. Cellular Immunology, 1993, 147, 188-202.	3.0	11
54	The role of monovalent cations in the interaction between the cytotoxic T lymphocyte and its target. European Journal of Immunology, 1981, 11, 840-843.	2.9	9

JOHN H RUSSELL

55Separation of CD4+ Functional Responses by Peptide Dose in Th1 and Th2 Subsets Expressing the Same3.0856T-cell trafficking competence is required for CNS invasion. Journal of Neuroimmunology, 2006, 177, 1-10.2.3757Interaction Between the Immune and Central Nervous Systems. Immunologic Research, 2005, 32, 225-230.2.92	# /	Article	IF	CITATIONS
50 1-10. 2.3 7 Interaction Between the Immune and Central Nervous Systems. Immunologic Research, 2005, 32,	55	Separation of CD4+ Functional Responses by Peptide Dose in Th1 and Th2 Subsets Expressing the Same Transgenic Antigen Receptor. Cellular Immunology, 1993, 148, 357-370.	3.0	8
			2.3	7
			2.9	2
⁵⁸ IL-12 enhances IL-2 function by inducing CD25 expression through a p38 mitogen-activated protein 2.9 1 kinase pathway. European Journal of Immunology, 2000, 30, 1445-1452.	58	IL-12 enhances IL-2 function by inducing CD25 expression through a p38 mitogen-activated protein kinase pathway. European Journal of Immunology, 2000, 30, 1445-1452.	2.9	1
59 Apoptosis in the regulation of and function of T and B lymphocytes in inflammation. , 1999, , 39-52. 0	59 <i> </i>	Apoptosis in the regulation of and function of T and B lymphocytes in inflammation. , 1999, , 39-52.		0