List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4157073/publications.pdf Version: 2024-02-01

		6613	7348
279	26,829	79	152
papers	citations	h-index	g-index
291	291	291	16152
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanobodies as binding-chaperones stabilize the recombinant Bombyx mori acetylcholinesterase and protect the enzyme activity in pesticide detection. Enzyme and Microbial Technology, 2022, 155, 109992.	3.2	Ο
2	Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications. Methods in Molecular Biology, 2022, 2446, 3-17.	0.9	1
3	Cytoplasmic Expression of Nanobodies with Formylglycine Generating Enzyme Tag and Conversion to a Bio-Orthogonal Aldehyde Group. Methods in Molecular Biology, 2022, 2446, 357-371.	0.9	0
4	AAVâ€mediated delivery of an antiâ€BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 2022, 14, e09824.	6.9	13
5	An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. International Journal of Biological Macromolecules, 2022, 208, 421-442.	7.5	33
6	Neutralizing Dromedary-Derived Nanobodies Against Botl-Like Toxin From the Most Hazardous Scorpion Venom in the Middle East and North Africa Region. Frontiers in Immunology, 2022, 13, 863012.	4.8	4
7	Versatile Application of Nanobodies for Food Allergen Detection and Allergy Immunotherapy. Journal of Agricultural and Food Chemistry, 2022, 70, 8901-8912.	5.2	5
8	Sensitive Protein Detection Using Site-Specifically Oligonucleotide-Conjugated Nanobodies. Analytical Chemistry, 2022, 94, 10054-10061.	6.5	2
9	A guide to: generation and design of nanobodies. FEBS Journal, 2021, 288, 2084-2102.	4.7	153
10	Applications of Nanobodies. Annual Review of Animal Biosciences, 2021, 9, 401-421.	7.4	144
11	Development and Characterization of Nanobodies Targeting the Kupffer Cell. Frontiers in Immunology, 2021, 12, 641819.	4.8	6
12	Mechanisms Underlying Connexin Hemichannel Activation in Disease. International Journal of Molecular Sciences, 2021, 22, 3503.	4.1	27
13	Immunogenicity Risk Profile of Nanobodies. Frontiers in Immunology, 2021, 12, 632687.	4.8	97
14	Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery. Trends in Biotechnology, 2021, 39, 1263-1273.	9.3	74
15	Direct Immobilization of Engineered Nanobodies on Gold Sensors. ACS Applied Materials & Interfaces, 2021, 13, 17353-17360.	8.0	20
16	Unbiased Immunization Strategy Yielding Specific Nanobodies against Macadamia Allergen of Vicilin-like Protein for Immunoassay Development. Journal of Agricultural and Food Chemistry, 2021, 69, 5178-5188.	5.2	15
17	Development of Nanobodies Targeting Peste des Petits Ruminants Virus: The Prospect in Disease Diagnosis and Therapy. Animals, 2021, 11, 2206.	2.3	4
18	Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chemistry, 2021, 353, 129481.	8.2	36

#	Article	IF	CITATIONS
19	Nanobody-Based Immunosensor Detection Enhanced by Photocatalytic-Electrochemical Redox Cycling. Analytical Chemistry, 2021, 93, 13606-13614.	6.5	10
20	Application of Single-Domain Antibodies ("Nanobodiesâ€) to Laboratory Diagnosis. Annals of Laboratory Medicine, 2021, 41, 549-558.	2.5	29
21	Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules, 2021, 11, 63.	4.0	13
22	Development of Nanobodies against Mal de RÃo Cuarto virus major viroplasm protein P9-1 for diagnostic sandwich ELISA and immunodetection. Scientific Reports, 2021, 11, 20013.	3.3	5
23	Development of Neutralizing Multimeric Nanobody Constructs Directed against IL-13: From Immunization to Lead Optimization. Journal of Immunology, 2021, 207, 2608-2620.	0.8	5
24	Complete Genome Sequencing of Field Isolates of Peste des Petits Ruminants Virus from Tanzania Revealed a High Nucleotide Identity with Lineage III PPR Viruses. Animals, 2021, 11, 2976.	2.3	5
25	Selection of Specific Nanobodies against Lupine Allergen Lup an 1 for Immunoassay Development. Foods, 2021, 10, 2428.	4.3	8
26	Intrabody Targeting HIF-1α Mediates Transcriptional Downregulation of Target Genes Related to Solid Tumors. International Journal of Molecular Sciences, 2021, 22, 12335.	4.1	2
27	Imaging of Glioblastoma Tumor-Associated Myeloid Cells Using Nanobodies Targeting Signal Regulatory Protein Alpha. Frontiers in Immunology, 2021, 12, 777524.	4.8	18
28	CS1-specific single-domain antibodies labeled with Actinium-225 prolong survival and increase CD8+ T cells and PD-L1 expression in Multiple Myeloma. OncoImmunology, 2021, 10, 2000699.	4.6	9
29	Development of anti-matrix metalloproteinase-2 (MMP-2) nanobodies as potential therapeutic and diagnostic tools. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102103.	3.3	16
30	The Therapeutic Potential of Nanobodies. BioDrugs, 2020, 34, 11-26.	4.6	435
31	Development of a monoâ€specific antiâ€VEGF bivalent nanobody with extended plasma halfâ€life for treatment of pathologic neovascularization. Drug Testing and Analysis, 2020, 12, 92-100.	2.6	25
32	Identification of Nanobodies against the Acute Myeloid Leukemia Marker CD33. International Journal of Molecular Sciences, 2020, 21, 310.	4.1	18
33	Liposomal delivery of vascular endothelial growth factor/receptors and their inhibitors. Journal of Drug Targeting, 2020, 28, 379-385.	4.4	11
34	Nanobodies against the metal binding domains of ATP7B as tools to study copper transport in the cell. Metallomics, 2020, 12, 1941-1950.	2.4	0
35	Structural basis of nanobody recognition of grapevine fanleaf virus and of virus resistance loss. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10848-10855.	7.1	10
36	Electrochemical detection of Toxocara canis excretory-secretory antigens in children from rural communities in Esmeraldas Province, Ecuador: association between active infection and high eosinophilia. Parasites and Vectors, 2020, 13, 245.	2.5	5

#	Article	IF	CITATIONS
37	Development of Nanobodies Against Hemorrhagic and Myotoxic Components of Bothrops atrox Snake Venom. Frontiers in Immunology, 2020, 11, 655.	4.8	28
38	Non-canonical roles of connexins. Progress in Biophysics and Molecular Biology, 2020, 153, 35-41.	2.9	14
39	Nanobody-Based high-performance immunosorbent for selective beta 2-microglobulin purification from blood. Acta Biomaterialia, 2020, 107, 232-241.	8.3	20
40	Reshaping nanobodies for affinity purification on protein a. New Biotechnology, 2020, 57, 20-28.	4.4	5
41	Paradigm shift in the diagnosis of peste des petits ruminants: scoping review. Acta Veterinaria Scandinavica, 2020, 62, 7.	1.6	12
42	Fast One-Step Ultrasensitive Detection of <i>Toxocara canis</i> Antigens by a Nanobody-Based Electrochemical Magnetosensor. Analytical Chemistry, 2019, 91, 11582-11588.	6.5	18
43	NIRF-Molecular Imaging with Synovial Macrophages-Targeting Vsig4 Nanobody for Disease Monitoring in a Mouse Model of Arthritis. International Journal of Molecular Sciences, 2019, 20, 3347.	4.1	11
44	Soluble aggregates present in cerebrospinal fluid change in size and mechanism of toxicity during Alzheimer's disease progression. Acta Neuropathologica Communications, 2019, 7, 120.	5.2	64
45	Identification of New DR5 Agonistic Nanobodies and Generation of Multivalent Nanobody Constructs for Cancer Treatment. International Journal of Molecular Sciences, 2019, 20, 4818.	4.1	19
46	Increased Expression of Adherens Junction Components in Mouse Liver following Bile Duct Ligation. Biomolecules, 2019, 9, 636.	4.0	4
47	LlamaÂperipheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct. Immunogenetics, 2019, 71, 307-320.	2.4	16
48	An innovative approach in the detection of Toxocara canis excretory/secretory antigens using specific nanobodies. International Journal for Parasitology, 2019, 49, 635-645.	3.1	16
49	Site-Selective Functionalization of Nanobodies Using Intein-Mediated Protein Ligation for Innovative Bioconjugation. Methods in Molecular Biology, 2019, 2033, 117-130.	0.9	4
50	Combinatorial Design of a Nanobody that Specifically Targets Structured RNAs. Journal of Molecular Biology, 2018, 430, 1652-1670.	4.2	11
51	Pharmacokinetics of radiolabeled dimeric sdAbs constructs targeting human CD20. New Biotechnology, 2018, 45, 69-79.	4.4	21
52	Construction of High-Quality Camel Immune Antibody Libraries. Methods in Molecular Biology, 2018, 1701, 169-187.	0.9	26
53	Nanobodyâ€mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 2018, 16, 660-671.	8.3	55
54	The Development and Validation of a Novel Nanobody-Based Competitive ELISA for the Detection of Foot and Mouth Disease 3ABC Antibodies in Cattle. Frontiers in Veterinary Science, 2018, 5, 250.	2.2	26

#	Article	IF	CITATIONS
55	Guided Evolution of Recombinant Bombyx mori Acetylcholinesterase II by Homology Modeling to Change Pesticide Sensitivity. International Journal of Molecular Sciences, 2018, 19, 3366.	4.1	1
56	Understanding the Significance and Implications of Antibody Numbering and Antigen-Binding Surface/Residue Definition. Frontiers in Immunology, 2018, 9, 2278.	4.8	60
57	Site-Specific Radioactive Labeling of Nanobodies. Methods in Molecular Biology, 2018, 1827, 505-540.	0.9	11
58	Novel halfâ€life extended antiâ€MIF nanobodies protect against endotoxic shock. FASEB Journal, 2018, 32, 3411-3422.	0.5	27
59	Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins, 2018, 10, 108.	3.4	19
60	Blocking EGFR Activation with Antiâ€EGF Nanobodies via Two Distinct Molecular Recognition Mechanisms. Angewandte Chemie, 2018, 130, 14039-14043.	2.0	2
61	Blocking EGFR Activation with Antiâ€EGF Nanobodies via Two Distinct Molecular Recognition Mechanisms. Angewandte Chemie - International Edition, 2018, 57, 13843-13847.	13.8	18
62	Nanobodies as novel therapeutic agents in envenomation. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2955-2965.	2.4	30
63	The structural basis of nanobody unfolding reversibility and thermoresistance. Scientific Reports, 2018, 8, 7934.	3.3	106
64	Development of a Nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Scientific Reports, 2018, 8, 9019.	3.3	49
65	Glioblastoma-specific anti-TUFM nanobody for <i>in-vitro</i> immunoimaging and cancer stem cell targeting. Oncotarget, 2018, 9, 17282-17299.	1.8	21
66	Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its function. Iranian Journal of Basic Medical Sciences, 2018, 21, 260-266.	1.0	16
67	Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Molecular Imaging and Biology, 2017, 19, 49-58.	2.6	24
68	Limiting the protein corona: A successful strategy for inÂvivo active targeting of anti-HER2 nanobody-functionalized nanostars. Biomaterials, 2017, 123, 15-23.	11.4	36
69	Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Protein Expression and Purification, 2017, 133, 25-34.	1.3	16
70	Functionalization of gold nanoparticles with nanobodies through physical adsorption. Analytical Methods, 2017, 9, 3430-3440.	2.7	36
71	Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Scientific Reports, 2017, 7, 3385.	3.3	27
72	Exploiting sequence and stability information for directing nanobody stability engineering. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2196-2205.	2.4	38

#	Article	IF	CITATIONS
73	Inactivation of γâ€secretases leads to accumulation of substrates and nonâ€Alzheimer neurodegeneration. EMBO Molecular Medicine, 2017, 9, 1088-1099.	6.9	35
74	Theranostic Radiolabeled Anti-CD20 sdAb for Targeted Radionuclide Therapy of Non-Hodgkin Lymphoma. Molecular Cancer Therapeutics, 2017, 16, 2828-2839.	4.1	57
75	Bio-chemical Process Monitoring with Terahertz Sensor. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 29-36.	0.3	0
76	Inhibiting the Ca 2+ Influx Induced by Human CSF. Cell Reports, 2017, 21, 3310-3316.	6.4	20
77	A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Scientific Reports, 2017, 7, 15130.	3.3	41
78	Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angewandte Chemie, 2017, 129, 7858-7862.	2.0	9
79	Ultrasensitive Measurement of Ca ²⁺ Influx into Lipid Vesicles Induced by Protein Aggregates. Angewandte Chemie - International Edition, 2017, 56, 7750-7754.	13.8	72
80	Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins. Protein Expression and Purification, 2017, 137, 64-76.	1.3	5
81	Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity. Immunobiology, 2017, 222, 807-813.	1.9	23
82	Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy. Frontiers in Immunology, 2017, 8, 1442.	4.8	126
83	Nanobodies As Novel Agents for Targeting Angiogenesis in Solid Cancers. Frontiers in Immunology, 2017, 8, 1746.	4.8	45
84	Structural basis for the high specificity of a Trypanosoma congolense immunoassay targeting glycosomal aldolase. PLoS Neglected Tropical Diseases, 2017, 11, e0005932.	3.0	15
85	Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 2017, 8, 44141-44158.	1.8	44
86	Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies. Current Pharmaceutical Design, 2017, 22, 6500-6518.	1.9	37
87	Generation and in vitro characterisation of inhibitory nanobodies towards plasminogen activator inhibitor 1. Thrombosis and Haemostasis, 2016, 116, 1032-1040.	3.4	14
88	Structure and Function of Camelid VHH. , 2016, , 153-159.		7
89	An Anti-proteome Nanobody Library Approach Yields a Specific Immunoassay for Trypanosoma congolense Diagnosis Targeting Glycosomal Aldolase. PLoS Neglected Tropical Diseases, 2016, 10, e0004420.	3.0	30
90	A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior. Journal of Biological Chemistry, 2016, 291, 15156-15168.	3.4	32

#	Article	IF	CITATIONS
91	Sortase Aâ€mediated siteâ€specific labeling of camelid singleâ€domain antibodyâ€fragments: a versatile strategy for multiple molecular imaging modalities. Contrast Media and Molecular Imaging, 2016, 11, 328-339.	0.8	100
92	Emerging site-specific bioconjugation strategies for radioimmunotracer development. Expert Opinion on Drug Delivery, 2016, 13, 1149-1163.	5.0	40
93	Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opinion on Biological Therapy, 2016, 16, 1035-1047.	3.1	119
94	Identification and characterization of a novel nanobody against human placental growth factor to modulate angiogenesis. Molecular Immunology, 2016, 78, 183-192.	2.2	22
95	Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells. Scientific Reports, 2016, 6, 31910.	3.3	42
96	Specificity Evaluation and Disease Monitoring in Arthritis Imaging with Complement Receptor of the Ig superfamily targeting Nanobodies. Scientific Reports, 2016, 6, 35966.	3.3	11
97	Dromedary immune response and specific Kv2.1 antibody generation using a specific immunization approach. International Journal of Biological Macromolecules, 2016, 93, 167-171.	7.5	3
98	Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori. Cell Host and Microbe, 2016, 19, 55-66.	11.0	88
99	Distinct antibody species: structural differences creating therapeutic opportunities. Current Opinion in Immunology, 2016, 40, 7-13.	5.5	47
100	Nanobodies as Probes for Protein Dynamics in Vitro and in Cells. Journal of Biological Chemistry, 2016, 291, 3767-3775.	3.4	84
101	Development of a high affinity Affibodyâ€derived protein against amyloid βâ€peptide for future Alzheimer's disease therapy. Biotechnology Journal, 2015, 10, 1668-1669.	3.5	9
102	Nanobodies and recombinant binders in cell biology. Journal of Cell Biology, 2015, 209, 633-644.	5.2	195
103	Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. Plant Molecular Biology, 2015, 87, 355-369.	3.9	33
104	A phage-displayed single domain antibody fused to alkaline phosphatase for detection of porcine circovirus type 2. Journal of Virological Methods, 2015, 213, 84-92.	2.1	12
105	Monitoring liver macrophages using nanobodies targeting Vsig4: Concanavalin A induced acute hepatitis as paradigm. Immunobiology, 2015, 220, 200-209.	1.9	27
106	TRIM28 and β-Actin Identified via Nanobody-Based Reverse Proteomics Approach as Possible Human Glioblastoma Biomarkers. PLoS ONE, 2014, 9, e113688.	2.5	26
107	Generation of a Nanobody Targeting the Paraflagellar Rod Protein of Trypanosomes. PLoS ONE, 2014, 9, e115893.	2.5	26
108	Targeted Radionuclide Therapy with A ¹⁷⁷ Lu-labeled Anti-HER2 Nanobody. Theranostics, 2014, 4, 708-720.	10.0	165

#	Article	IF	CITATIONS
109	Interactions between Metal-binding Domains Modulate Intracellular Targeting of Cu(I)-ATPase ATP7B, as Revealed by Nanobody Binding. Journal of Biological Chemistry, 2014, 289, 32682-32693.	3.4	33
110	Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic Nanobodies. Leukemia, 2014, 28, 444-447.	7.2	68
111	Molecular analysis of heavy chain-only antibodies of Camelus bactrianus. Biochemistry (Moscow), 2014, 79, 1382-1390.	1.5	26
112	Identification of a novel, nanobodyâ€induced, mechanism of TAFI inactivation and its in vivo application. Journal of Thrombosis and Haemostasis, 2014, 12, 229-236.	3.8	14
113	In vitro and in vivo characterisation of the profibrinolytic effect of an inhibitory anti-rat TAFI nanobody. Thrombosis and Haemostasis, 2014, 111, 824-832.	3.4	10
114	Generation of VHH antibodies against the Arabidopsis thaliana seed storage proteins. Plant Molecular Biology, 2014, 84, 83-93.	3.9	14
115	Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014, 32, 263-270.	9.3	341
116	Specific Targeting of Atherosclerotic Plaques in ApoEâ^'/â^' Mice Using a New Camelid sdAb Binding the Vulnerable Plaque Marker LOX-1. Molecular Imaging and Biology, 2014, 16, 690-698.	2.6	25
117	A general protocol for the generation of Nanobodies for structural biology. Nature Protocols, 2014, 9, 674-693.	12.0	571
118	Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media and Molecular Imaging, 2014, 9, 211-220.	0.8	57
119	Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Biochemical Journal, 2014, 459, 59-69.	3.7	56
120	Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge. Journal of Virology, 2014, 88, 8278-8296.	3.4	56
121	Expression, purification and X-ray crystallographic analysis of the <i>Helicobacter pylori</i> blood group antigen-binding adhesin BabA. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1631-1635.	0.8	11
122	Nanoimmunoassay onto a screen printed electrode for HER2 breast cancer biomarker determination. Talanta, 2014, 130, 164-170.	5.5	66
123	Site-Specific Labeling of Cysteine-Tagged Camelid Single-Domain Antibody-Fragments for Use in Molecular Imaging. Bioconjugate Chemistry, 2014, 25, 979-988.	3.6	135
124	Molecular Imaging with Macrophage CRIg-Targeting Nanobodies for Early and Preclinical Diagnosis in a Mouse Model of Rheumatoid Arthritis. Journal of Nuclear Medicine, 2014, 55, 824-829.	5.0	47
125	Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opinion on Drug Delivery, 2014, 11, 1939-1954.	5.0	88
126	A camelid antibody candidate for development of a therapeutic agent against <i>Hemiscorpius lepturus</i> envenomation. FASEB Journal, 2014, 28, 4004-4014.	0.5	26

#	Article	IF	CITATIONS
127	A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst, The, 2014, 139, 3718.	3.5	66
128	Wheat germ inÂvitro translation to produce one of the most toxic sodium channel specific toxins. Bioscience Reports, 2014, 34, .	2.4	2
129	Development of VEGFR2-specific Nanobody Pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. New Biotechnology, 2013, 30, 205-209.	4.4	68
130	The genome-wide binding profile of the Sulfolobus solfataricustranscription factor Ss-LrpB shows binding events beyond direct transcription regulation. BMC Genomics, 2013, 14, 828.	2.8	21
131	Synthesis, Preclinical Validation, Dosimetry, and Toxicity of ⁶⁸ Ga-NOTA-Anti-HER2 Nanobodies for iPET Imaging of HER2 Receptor Expression in Cancer. Journal of Nuclear Medicine, 2013, 54, 776-784.	5.0	173
132	Nanobodies: Natural Single-Domain Antibodies. Annual Review of Biochemistry, 2013, 82, 775-797.	11.1	1,602
133	Camelid single-domain antibody-fragment engineering for (pre)clinical <i>in vivo</i> molecular imaging applications: adjusting the bullet to its target. Expert Opinion on Biological Therapy, 2013, 13, 1149-1160.	3.1	105
134	VHH (nanobody) directed against human glycophorin A: A tool for autologous red cell agglutination assays. Analytical Biochemistry, 2013, 438, 82-89.	2.4	35
135	Nanobodies and their potential applications. Nanomedicine, 2013, 8, 1013-1026.	3.3	252
136	Resolution of an immunodiagnostic dilemma: Heavy chain chimeric antibodies for species in which plasmocytomas are unknown. Molecular Immunology, 2013, 53, 140-148.	2.2	13
137	A Nanobody Binding to Non-Amyloidogenic Regions of the Protein Human Lysozyme Enhances Partial Unfolding but Inhibits Amyloid Fibril Formation. Journal of Physical Chemistry B, 2013, 117, 13245-13258.	2.6	42
138	Surface display of a single-domain antibody library on Gram-positive bacteria. Cellular and Molecular Life Sciences, 2013, 70, 1081-1093.	5.4	53
139	Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Research, 2013, 41, 2932-2949.	14.5	21
140	Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites. Nucleic Acids Research, 2013, 41, e59-e59.	14.5	25
141	Epitope structure and binding affinity of single chain llama antiâ€î²â€amyloid antibodies revealed by proteolytic excision affinityâ€mass spectrometry. Journal of Molecular Recognition, 2013, 26, 1-9.	2.1	22
142	Generation and characterization of non-competitive furin-inhibiting nanobodies. Biochemical Journal, 2012, 448, 73-82.	3.7	26
143	Affinity Is an Important Determinant of the Anti-Trypanosome Activity of Nanobodies. PLoS Neglected Tropical Diseases, 2012, 6, e1902.	3.0	15
144	Dual Beneficial Effect of Interloop Disulfide Bond for Single Domain Antibody Fragments. Journal of Biological Chemistry, 2012, 287, 1970-1979.	3.4	113

#	Article	IF	CITATIONS
145	Generation of Single Domain Antibody Fragments Derived from Camelids and Generation of Manifold Constructs. Methods in Molecular Biology, 2012, 907, 145-176.	0.9	124
146	Nanobodies Targeting Mouse/Human VCAM1 for the Nuclear Imaging of Atherosclerotic Lesions. Circulation Research, 2012, 110, 927-937.	4.5	167
147	Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies. Veterinary Immunology and Immunopathology, 2012, 146, 254-263.	1.2	29
148	Using microdialysis to analyse the passage of monovalent nanobodies through the blood–brain barrier. British Journal of Pharmacology, 2012, 165, 2341-2353.	5.4	42
149	A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Archives of Biochemistry and Biophysics, 2012, 526, 114-123.	3.0	46
150	Introduction to Heavy Chain Antibodies and Derived Nanobodies. , 2012, 911, 15-26.		75
151	Bacterial Two Hybrid: A Versatile One-Step Intracellular Selection Method. , 2012, 911, 135-150.		9
152	Nanobody-Based Chromatin Immunoprecipitation. , 2012, 911, 491-505.		3
153	Pre-clinical studies of toxin-specific Nanobodies: Evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. Toxicology and Applied Pharmacology, 2012, 264, 222-231.	2.8	27
154	Development of ¹⁷⁷ Luâ€nanobodies for radioimmunotherapy of HER2â€positive breast cancer: evaluation of different bifunctional chelators. Contrast Media and Molecular Imaging, 2012, 7, 254-264.	0.8	70
155	Generation and characterization of a functional Nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Molecular Immunology, 2012, 50, 35-41.	2.2	97
156	Nanobody-coupled microbubbles as novel molecular tracer. Journal of Controlled Release, 2012, 158, 346-353.	9.9	78
157	Abstract 4627: Generation and characterization of non-competitive furin-inhibiting nanobodies. , 2012, , .		0
158	Preclinical screening of antiâ€HER2 nanobodies for molecular imaging of breast cancer. FASEB Journal, 2011, 25, 2433-2446.	0.5	246
159	A Case Of Convergence: Why Did a Simple Alternative to Canonical Antibodies Arise in Sharks and Camels?. PLoS Biology, 2011, 9, e1001120.	5.6	159
160	Generation of Anti-infectome/Anti-proteome Nanobodies. Methods in Molecular Biology, 2011, 790, 239-259.	0.9	15
161	Specific Cell Targeting with Nanobody Conjugated Branched Gold Nanoparticles for Photothermal Therapy. ACS Nano, 2011, 5, 4319-4328.	14.6	338
162	Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel. Veterinary Immunology and Immunopathology, 2011, 142, 49-56.	1.2	44

#	ARTICLE	IF	CITATIONS
163	TAFIa inhibiting nanobodies as profibrinolytic tools and discovery of a new TAFIa conformation. Journal of Thrombosis and Haemostasis, 2011, 9, 2268-2277.	3.8	21
164	A simple quantitative affinity capturing assay of poliovirus antigens and subviral particles by single-domain antibodies using magnetic beads. Journal of Virological Methods, 2011, 173, 300-305.	2.1	13
165	Recent developments in engineering and delivery of protein and antibody therapeutics. Current Opinion in Biotechnology, 2011, 22, 839-842.	6.6	10
166	Correlation Between Epidermal Growth Factor Receptor-Specific Nanobody Uptake and Tumor Burden: A Tool for Noninvasive Monitoring of Tumor Response to Therapy. Molecular Imaging and Biology, 2011, 13, 940-948.	2.6	51
167	Localization, mechanism and reduction of renal retention of technetiumâ€99m labeled epidermal growth factor receptorâ€specific nanobody in mice. Contrast Media and Molecular Imaging, 2011, 6, 85-92.	0.8	108
168	Development of Cys38 knock-out and humanized version of NbAahII10 nanobody with improved neutralization of AahII Scorpion toxin. Protein Engineering, Design and Selection, 2011, 24, 727-735.	2.1	30
169	High Affinity Nanobodies against the Trypanosome brucei VSG Are Potent Trypanolytic Agents that Block Endocytosis. PLoS Pathogens, 2011, 7, e1002072.	4.7	58
170	Immunological Aspects of Scorpion Toxins: Current Status and Perspectives. Inflammation and Allergy: Drug Targets, 2011, 10, 358-368.	1.8	8
171	Nanobodies [®] : proficient tools in diagnostics. Expert Review of Molecular Diagnostics, 2010, 10, 777-785.	3.1	75
172	A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines. Cellular and Molecular Life Sciences, 2010, 67, 3371-3387.	5.4	47
173	In vitro antiviral activity of single domain antibody fragments against poliovirus. Antiviral Research, 2010, 87, 257-264.	4.1	38
174	Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor. Journal of Thrombosis and Haemostasis, 2010, 8, 1302-1312.	3.8	40
175	Modulation of protein properties in living cells using nanobodies. Nature Structural and Molecular Biology, 2010, 17, 133-138.	8.2	494
176	Minimum information about a protein affinity reagent (MIAPAR). Nature Biotechnology, 2010, 28, 650-653.	17.5	50
177	In Vitro Analysis and In Vivo Tumor Targeting of a Humanized, Grafted Nanobody in Mice Using Pinhole SPECT/Micro-CT. Journal of Nuclear Medicine, 2010, 51, 1099-1106.	5.0	106
178	Nanobodies, Single-Domain Antigen-Binding Fragments of Camelid Heavy-Chain Antibodies. , 2010, , 29-48.		11
179	Nanobodies as Tools for In Vivo Imaging of Specific Immune Cell Types. Journal of Nuclear Medicine, 2010, 51, 782-789.	5.0	102

180 Isolation of Antigen-Specific Nanobodies. , 2010, , 251-266.

#	Article	IF	CITATIONS
181	A Novel Promiscuous Class of Camelid Single-Domain Antibody Contributes to the Antigen-Binding Repertoire. Journal of Immunology, 2010, 184, 5696-5704.	0.8	68
182	A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB Journal, 2010, 24, 3479-3489.	0.5	126
183	Direct Injection of Functional Single-Domain Antibodies from E. coli into Human Cells. PLoS ONE, 2010, 5, e15227.	2.5	48
184	Nanobodies, a promising tool for species-specific diagnosis of Taenia solium cysticercosis. International Journal for Parasitology, 2009, 39, 625-633.	3.1	72
185	Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase. Protein Science, 2009, 18, 619-628.	7.6	28
186	Single-domain antibody fragments with high conformational stability. Protein Science, 2009, 11, 500-515.	7.6	501
187	General Strategy to Humanize a Camelid Single-domain Antibody and Identification of a Universal Humanized Nanobody Scaffold. Journal of Biological Chemistry, 2009, 284, 3273-3284.	3.4	441
188	Camelid immunoglobulins and nanobody technology. Veterinary Immunology and Immunopathology, 2009, 128, 178-183.	1.2	424
189	Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. Biochemical Journal, 2009, 424, 263-272.	3.7	56
190	Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. Journal of Immunological Methods, 2008, 329, 138-150.	1.4	61
191	Engineering a Camelid Antibody Fragment That Binds to the Active Site of Human Lysozyme and Inhibits Its Conversion into Amyloid Fibrils. Biochemistry, 2008, 47, 11041-11054.	2.5	66
192	Disulfide Bond Introduction for General Stabilization of Immunoglobulin Heavy-Chain Variable Domains. Journal of Molecular Biology, 2008, 377, 478-488.	4.2	140
193	VHH, bivalent domains and chimeric Heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin Aahl′. Molecular Immunology, 2008, 45, 3847-3856.	2.2	123
194	Single-domain antibodies as building blocks for novel therapeutics. Current Opinion in Pharmacology, 2008, 8, 600-608.	3.5	173
195	Antibody technology in proteomics. Briefings in Functional Genomics & Proteomics, 2008, 7, 275-282.	3.8	19
196	A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins. Molecular and Cellular Proteomics, 2008, 7, 282-289.	3.8	616
197	99mTc-Labeled Nanobodies: A New Type of Targeted Probes for Imaging Antigen Expression. Current Radiopharmaceuticals, 2008, 1, 37-41.	0.8	24
198	Antibody Fragments as Probe in Biosensor Development. Sensors, 2008, 8, 4669-4686.	3.8	134

#	Article	IF	CITATIONS
199	Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. BMC Biotechnology, 2007, 7, 7.	3.3	66
200	ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nature Methods, 2007, 4, 13-17.	19.0	231
201	Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4586-4591.	7.1	541
202	Antibody repertoire development in camelids. Developmental and Comparative Immunology, 2006, 30, 187-198.	2.3	164
203	Cloning and characterization of the dromedary (Camelus dromedarius) neonatal Fc receptor (drFcRn). Developmental and Comparative Immunology, 2006, 30, 1203-1215.	2.3	21
204	Heavy-Chain-Only Antibody Expression and B-Cell Development in the Mouse. Critical Reviews in Immunology, 2006, 26, 377-390.	0.5	5
205	Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nature Medicine, 2006, 12, 580-584.	30.7	140
206	Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods, 2006, 3, 887-889.	19.0	613
207	A Synthetic Camel Anti-Lysozyme Peptide Antibody (Peptibody) with Flexible Loop Structure Identified by High-Resolution Affinity Mass Spectrometry. Chemistry - A European Journal, 2006, 12, 1915-1923.	3.3	18
208	Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosensors and Bioelectronics, 2005, 21, 483-490.	10.1	209
209	Strong in Vivo Maturation Compensates for Structurally Restricted H3 Loops in Antibody Repertoires. Journal of Biological Chemistry, 2005, 280, 14114-14121.	3.4	52
210	Expression of a Dromedary Heavy Chain-Only Antibody and B Cell Development in the Mouse. Journal of Immunology, 2005, 175, 3769-3779.	0.8	27
211	Nanobodies as novel agents for cancer therapy. Expert Opinion on Biological Therapy, 2005, 5, 111-124.	3.1	196
212	Engineering Camel Single-Domain Antibodies and Immobilization Chemistry for Human Prostate-Specific Antigen Sensing. Analytical Chemistry, 2005, 77, 7547-7555.	6.5	106
213	Reduced Global Cooperativity is a Common Feature Underlying the Amyloidogenicity of Pathogenic Lysozyme Mutations. Journal of Molecular Biology, 2005, 346, 773-788.	4.2	100
214	Antigen Binding and Solubility Effects upon the Veneering of a Camel VHH in Framework-2 to Mimic a VH. Journal of Molecular Biology, 2005, 350, 112-125.	4.2	90
215	Identification of a Universal VHH Framework to Graft Non-canonical Antigen-binding Loops of Camel Single-domain Antibodies. Journal of Molecular Biology, 2005, 352, 597-607.	4.2	194
216	Chemical Basis for the Affinity Maturation of a Camel Single Domain Antibody. Journal of Biological Chemistry, 2004, 279, 53593-53601.	3.4	66

#	Article	IF	CITATIONS
217	Efficient Targeting of Conserved Cryptic Epitopes of Infectious Agents by Single Domain Antibodies. Journal of Biological Chemistry, 2004, 279, 1256-1261.	3.4	238
218	Efficient Cancer Therapy with a Nanobody-Based Conjugate. Cancer Research, 2004, 64, 2853-2857.	0.9	318
219	An S-Layer Heavy Chain Camel Antibody Fusion Protein for Generation of a Nanopatterned Sensing Layer To Detect the Prostate-Specific Antigen by Surface Plasmon Resonance Technology. Bioconjugate Chemistry, 2004, 15, 664-671.	3.6	92
220	Single Domain Antibodies Derived from Dromedary Lymph Node and Peripheral Blood Lymphocytes Sensing Conformational Variants of Prostate-specific Antigen. Journal of Biological Chemistry, 2004, 279, 51965-51972.	3.4	120
221	Heavy-chain only antibodies derived from dromedary are secreted and displayed by mouse B cells. Immunology, 2003, 109, 93-101.	4.4	27
222	A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature, 2003, 424, 783-788.	27.8	227
223	Generation of a Functional Monomolecular Protein Lattice Consisting of an S-Layer Fusion Protein Comprising the Variable Domain of a Camel Heavy Chain Antibody. Bioconjugate Chemistry, 2003, 14, 440-448.	3.6	57
224	Emergence and evolution of functional heavy-chain antibodies in Camelidae. Developmental and Comparative Immunology, 2003, 27, 87-103.	2.3	143
225	Crystal Structure of the Intrinsically Flexible Addiction Antidote MazE. Journal of Biological Chemistry, 2003, 278, 28252-28257.	3.4	109
226	Kinetic and Affinity Predictions of a Protein-Protein Interaction Using Multivariate Experimental Design. Journal of Biological Chemistry, 2002, 277, 29897-29907.	3.4	46
227	Three Camelid VHH Domains in Complex with Porcine Pancreatic α-Amylase. Journal of Biological Chemistry, 2002, 277, 23645-23650.	3.4	145
228	Efficient tumor targeting by single-domain antibody fragments of camels. International Journal of Cancer, 2002, 98, 456-462.	5.1	228
229	Heavy-chain antibodies in Camelidae ; a case of evolutionary innovation. Immunogenetics, 2002, 54, 39-47.	2.4	64
230	Degenerate interfaces in antigen-antibody complexes. Journal of Molecular Biology, 2001, 313, 473-478.	4.2	48
231	Functional heavy-chain antibodies in camelidae. Advances in Immunology, 2001, 79, 261-296.	2.2	131
232	Single domain camel antibodies: current status. Reviews in Molecular Biotechnology, 2001, 74, 277-302.	2.8	291
233	Antigen Specificity and High Affinity Binding Provided by One Single Loop of a Camel Single-domain Antibody. Journal of Biological Chemistry, 2001, 276, 26285-26290.	3.4	141
234	Camel Single-domain Antibodies as Modular Building Units in Bispecific and Bivalent Antibody Constructs. Journal of Biological Chemistry, 2001, 276, 7346-7350.	3.4	268

#	Article	IF	CITATIONS
235	Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends in Biochemical Sciences, 2001, 26, 230-235.	7.5	283
236	β-Lactamase Inhibitors Derived from Single-Domain Antibody Fragments Elicited in the Camelidae. Antimicrobial Agents and Chemotherapy, 2001, 45, 2807-2812.	3.2	301
237	Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO Journal, 2000, 19, 921-930.	7.8	243
238	Canonical antigen-binding loop structures in immunoglobulins: more structures, more canonical classes?. Journal of Molecular Biology, 2000, 300, 83-91.	4.2	93
239	Single domain antibodies: comparison of camel VH and camelised human VH domains. Journal of Immunological Methods, 1999, 231, 25-38.	1.4	127
240	A single-domain antibody fragment in complex with RNase A: non-canonical loop structures and nanomolar affinity using two CDR loops. Structure, 1999, 7, 361-370.	3.3	150
241	The crystal structure of recombinant rat pancreatic RNase A. , 1999, 35, 1-12.		7
242	Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. Journal of Molecular Recognition, 1999, 12, 131-140.	2.1	119
243	Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IGG2A heavy-chain antibodies11This work was supported by the VLIR, VIB and FGWO Molecular Immunology, 1999, 36, 515-524.	2.2	100
244	Corrigendum to: Isolation and characterization of single-chain Fv genes encoding antibodies specific for Drosophila Poxn protein (FEBS 20963). FEBS Letters, 1999, 443, 80-80.	2.8	0
245	Unique singleâ€domain antigen binding fragments derived from naturally occurring camel heavyâ€chain antibodies. Journal of Molecular Recognition, 1999, 12, 131-140.	2.1	3
246	Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO Journal, 1998, 17, 3512-3520.	7.8	421
247	Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature, 1998, 395, 402-405.	27.8	205
248	Camel single-domain antibody inhibits enzyme by mimicking carbohydrate substrate. , 1998, 32, 515-522.		92
249	Different residues in periplasmic domains of the CcmC inner membrane protein of Pseudomonas fluorescens ATCC 17400 are critical for cytochrome c biogenesis and pyoverdine-mediated iron uptake. Molecular Microbiology, 1998, 30, 547-555.	2.5	31
250	Isolation and characterization of single-chain Fv genes encoding antibodies specific forDrosophila Poxnprotein. FEBS Letters, 1998, 437, 75-80.	2.8	11
251	The regulated expression of an intrabody produces a mutant phenotype inDrosophila. FEBS Letters, 1998, 437, 81-86.	2.8	6
252	The specific variable domain of camel heavy-chain antibodies is encoded in the germline. Journal of Molecular Biology, 1998, 275, 413-418.	4.2	83

#	Article	IF	CITATIONS
253	Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Letters, 1997, 414, 521-526.	2.8	646
254	Comparison of llama VH sequences from conventional and heavy chain antibodies. Molecular Immunology, 1997, 34, 1121-1131.	2.2	271
255	A DNA Sequence for Positioning Chromatosomes. Journal of Molecular Biology, 1996, 257, 486-491.	4.2	36
256	Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nature Structural and Molecular Biology, 1996, 3, 803-811.	8.2	448
257	Differential association of linker histones H1 and H5 with telomeric nucleosomes in chicken erythrocytes. Nucleic Acids Research, 1994, 22, 5635-5639.	14.5	20
258	Homo- and Heteronuclear Two-Dimensional NMR Studies of the Globular Domain of Histone H1: Full Assignment, Tertiary Structure, and Comparison with the Globular Domain of Histone H5. Biochemistry, 1994, 33, 11079-11086.	2.5	98
259	DNA Sequence Organization in Chromatosomes. Journal of Molecular Biology, 1994, 235, 855-870.	4.2	54
260	Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Engineering, Design and Selection, 1994, 7, 1129-1135.	2.1	407
261	Naturally occurring antibodies devoid of light chains. Nature, 1993, 363, 446-448.	27.8	2,600
262	Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: Sequential assignment and secondary structure. Biochemistry, 1993, 32, 11345-11351.	2.5	58
263	DNA recombination associated with short direct repeats in Leishmania mexicana M379. Molecular and Biochemical Parasitology, 1992, 50, 351-353.	1.1	23
264	Neutron scattering studies of chromatosomes. Biochemical and Biophysical Research Communications, 1991, 179, 810-816.	2.1	28
265	Chromosome rearrangement in Leishmania mexicana M379. Molecular and Biochemical Parasitology, 1991, 46, 53-60.	1.1	21
266	Comparative filter binding study of H5 to nucleosome core particles, H1, H5 depleted chromatosomes and DNA fragments. Molecular Biology Reports, 1989, 13, 191-196.	2.3	5
267	Formation, stability and core histone positioning of nucleosomes reassembled on bent and other nucleosome-derived DNA. Journal of Molecular Biology, 1989, 207, 183-192.	4.2	45
268	Limitations of the poly(glutamic acid) reconstitution method in the reassembly of mono- and dinucleosomes. Biochemistry, 1986, 25, 5043-5051.	2.5	9
269	Neutron scattering of chromatin multinucleosomes. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 136, 265-267.	0.9	0
270	Assembly of oligonucleosomes into a limit series of multimeric higher-order chromatin structures. FEBS Journal, 1985, 150, 441-442.	0.2	9

#	Article	IF	CITATIONS
271	Scatter analysis of discrete-sized chromatin fragments favours a cylindrical organization. FEBS Journal, 1985, 151, 283-289.	0.2	11
272	Putative regulatory sequences for the transcription of mini-exons in Trypanosoma brucei as revealed by S1 sensitivity. Gene, 1985, 36, 263-270.	2.2	8
273	Influence of histones H1/H5 on the DNA coiling in the nucleosome — electric dichroism and birefringence study. International Journal of Biological Macromolecules, 1981, 3, 370-376.	7.5	12
274	Differences in rearrangements of H1 and H5 in chicken erythrocyte chromatin. Biochemistry, 1981, 20, 1104-1110.	2.5	33
275	Protection of discrete DNA fragments by the complex Hl-octamerhistones or H5-octamerhistonesafter micrococcal nuclease digestion. Nucleic Acids Research, 1981, 9, 3671-3680.	14.5	6
276	The structural organization of dinudeosomes and oligonucleosomes. Electric dichroism and birefringence study. Nucleic Acids Research, 1981, 9, 5763-5784.	14.5	25
277	Upon the observation of superbeads in chromatin. Nucleic Acids Research, 1980, 8, 2165-2172.	14.5	39
278	Preparation and purification of mononucleosome particles containing histone H5. FEBS Letters, 1980, 119, 93-96.	2.8	3
279	Single-Domain Antibodies. , 0, , 216-230.		3