Jyoti Katoch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4156981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visualizing band structure hybridization and superlattice effects in twisted MoS ₂ /WS ₂ heterobilayers. 2D Materials, 2022, 9, 015032.	4.4	9
2	In Operando Angleâ€Resolved Photoemission Spectroscopy with Nanoscale Spatial Resolution: Spatial Mapping of the Electronic Structure of Twisted Bilayer Graphene. Small Science, 2021, 1, 2000075.	9.9	8
3	Van Hove Singularities: Observation of Electrically Tunable van Hove Singularities in Twisted Bilayer Graphene from NanoARPES (Adv. Mater. 31/2020). Advanced Materials, 2020, 32, 2070230.	21.0	0
4	Momentum-resolved view of highly tunable many-body effects in a graphene/hBN field-effect device. Physical Review B, 2020, 101, .	3.2	13
5	Observation of Electrically Tunable van Hove Singularities in Twisted Bilayer Graphene from NanoARPES. Advanced Materials, 2020, 32, 2001656.	21.0	25
6	Direct observation of minibands in a twisted graphene/WS ₂ bilayer. Science Advances, 2020, 6, eaay6104.	10.3	39
7	Accessing the Spectral Function in a Current-Carrying Device. Physical Review Letters, 2020, 125, 236403.	7.8	12
8	Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Applied Physics Letters, 2019, 114, 151601.	3.3	14
9	Spectroscopic evaluation of charge-transfer doping and strain in graphene/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS</mml:mi> <mml:mn>2 heterostructures. Physical Review B, 2019, 99, .</mml:mn></mml:msub></mml:math 	ml:m 8. 2 <td>ml:masub></td>	ml:masub>
10	Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nature Physics, 2018, 14, 355-359.	16.7	83
11	Transport Spectroscopy of Sublattice-Resolved Resonant Scattering in Hydrogen-Doped Bilayer Graphene. Physical Review Letters, 2018, 121, 136801.	7.8	11
12	Spin inversion in graphene spin valves by gate-tunable magnetic proximity effect at one-dimensional contacts. Nature Communications, 2018, 9, 2869.	12.8	65
13	Probing tunneling spin injection into graphene via bias dependence. Physical Review B, 2018, 98, .	3.2	9
14	Electronic structure of exfoliated and epitaxial hexagonal boron nitride. Physical Review Materials, 2018, 2, .	2.4	19
15	Growth of uniform CaGe 2 films by alternating layer molecular beam epitaxy. Journal of Crystal Growth, 2017, 460, 134-138.	1.5	10
16	Strontium Oxide Tunnel Barriers for High Quality Spin Transport and Large Spin Accumulation in Graphene. Nano Letters, 2017, 17, 7578-7585.	9.1	20
17	Strong Modulation of Spin Currents in Bilayer Graphene by Static and Fluctuating Proximity Exchange Fields. Physical Review Letters, 2017, 118, 187201.	7.8	66
18	Uniform large-area growth of nanotemplated high-quality monolayer MoS2. Applied Physics Letters, 2017, 110, 263103.	3.3	8

Јүоті Катосн

#	Article	IF	CITATIONS
19	Focused Ion Beam Prepared Cross-Sectional Transmission Electron Microscopy Preparation On CaGe2 On Ge(111) Grown By Molecular Beam Epitaxy. Microscopy and Microanalysis, 2017, 23, 290-291.	0.4	0
20	Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers. Applied Physics Letters, 2016, 109, 122411.	3.3	41
21	NaSn ₂ As ₂ : An Exfoliatable Layered van der Waals Zintl Phase. ACS Nano, 2016, 10, 9500-9508.	14.6	39
22	Spatially Resolved Electronic Properties of Single-Layer WS ₂ on Transition Metal Oxides. ACS Nano, 2016, 10, 10058-10067.	14.6	31
23	Scattering strength of the scatterer inducing variability in graphene on silicon oxide. Journal of Physics Condensed Matter, 2016, 28, 115301.	1.8	3
24	Adatom-induced phenomena in graphene. Synthetic Metals, 2015, 210, 68-79.	3.9	9
25	Large area epitaxial germanane for electronic devices. 2D Materials, 2015, 2, 035012.	4.4	47
26	Impact of charge impurities on transport properties of graphene nanoribbons. Applied Physics Letters, 2013, 102, .	3.3	10
27	Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497, 598-602.	27.8	1,404
28	Ultrahigh vacuum-compatible sockets for pin grid arrays used in nanoscale and atomic physics. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	0
29	Structure of a Peptide Adsorbed on Graphene and Graphite. Nano Letters, 2012, 12, 2342-2346.	9.1	134
30	Impact of calcium on transport property of graphene. Solid State Communications, 2012, 152, 60-63.	1.9	8
31	Effects of Layer Stacking on the Combination Raman Modes in Graphene. ACS Nano, 2011, 5, 1594-1599.	14.6	189
32	Multiphonon Raman scattering in graphene. Physical Review B, 2011, 84, .	3.2	29
33	Low Bias Electron Scattering in Structure-Identified Single Wall Carbon Nanotubes: Role of Substrate Polar Phonons. Physical Review Letters, 2011, 107, 146601.	7.8	16
9.4	Uncovering the dominant scatterer in graphene sheets on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 		47

34 display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SiO</mml:mtext></mml:mrow><mml:mn>2³/mml:mn>⁴⁷/mml:msub><mml:mrow><mml:mtext>SiO</mml:mtext>