
Rong Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4156141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boosting NAD+ blunts TLR4-induced type I IFN in control and systemic lupus erythematosus monocytes. Journal of Clinical Investigation, 2022, 132, .	8.2	27
2	Amino acid primed mTOR activity is essential for heart regeneration. IScience, 2022, 25, 103574.	4.1	15
3	Diabetes Suppresses Glucose Uptake and Glycolysis in Macrophages. Circulation Research, 2022, 130, 779-781.	4.5	13
4	Elevated MCU Expression by CaMKIIÎ Ɓ Limits Pathological Cardiac Remodeling. Circulation, 2022, 145, 1067-1083.	1.6	34
5	Upregulation of mitochondrial ATPase inhibitory factor 1 (ATPIF1) mediates increased glycolysis in mouse hearts. Journal of Clinical Investigation, 2022, 132, .	8.2	17
6	Remodeling of cardiac metabolism in heart failure with preserved ejection fraction. Current Opinion in Physiology, 2022, 27, 100559.	1.8	2
7	Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF. Circulation Research, 2021, 128, 232-245.	4.5	190
8	Acetylation of muscle creatine kinase negatively impacts high-energy phosphotransfer in heart failure. JCI Insight, 2021, 6, .	5.0	12
9	Metabolism and Inflammation in Cardiovascular Health and Diseases: Mechanisms to Therapies. Journal of Molecular and Cellular Cardiology, 2021, 157, 113-114.	1.9	3
10	GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Scientific Reports, 2021, 11, 8669.	3.3	25
11	Cardiac Energy Metabolism in Heart Failure. Circulation Research, 2021, 128, 1487-1513.	4.5	433
12	NAD ⁺ Redox Imbalance in the Heart Exacerbates Diabetic Cardiomyopathy. Circulation: Heart Failure, 2021, 14, e008170.	3.9	33
13	Boosting mitochondrial metabolism with dietary supplements in heart failure. Nature Reviews Cardiology, 2021, 18, 685-686.	13.7	4
14	Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts. Journal of Molecular and Cellular Cardiology, 2021, 158, 1-10.	1.9	19
15	Combat Doxorubicin Cardiotoxicity With the Power of Mitochondria Transfer. JACC: CardioOncology, 2021, 3, 441-443.	4.0	5
16	Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Reports, 2021, 16, 2473-2487.	4.8	42
17	Genetically encoded biosensors for evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments. Cell Reports Methods, 2021, 1, 100116.	2.9	14
18	Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis. Circulation Research, 2020, 126, 182-196.	4.5	135

#	Article	IF	CITATIONS
19	TNF-α induces acyl-CoA synthetase 3 to promote lipid droplet formation in human endothelial cells. Journal of Lipid Research, 2020, 61, 33-44.	4.2	29
20	Enhancing fatty acid oxidation negatively regulates PPARs signaling in the heart. Journal of Molecular and Cellular Cardiology, 2020, 146, 1-11.	1.9	10
21	Increasing Fatty Acid Oxidation Prevents High-Fat Diet–Induced Cardiomyopathy Through Regulating Parkin-Mediated Mitophagy. Circulation, 2020, 142, 983-997.	1.6	103
22	Metabolic Modulation of Macrophage Function Post Myocardial Infarction. Frontiers in Physiology, 2020, 11, 674.	2.8	11
23	Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. Journal of Clinical Investigation, 2020, 130, 6054-6063.	8.2	117
24	A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO Journal, 2020, 39, e104073.	7.8	110
25	Metabolic Modulation of Cardiac Health: The Role of Glucose and Amino Acids. FASEB Journal, 2020, 34, 1-1.	0.5	0
26	Roles of NAD Metabolism in Diabetic Cardiomyopathy. FASEB Journal, 2020, 34, 1-1.	0.5	0
27	Abstract 15465: Upregulation of Mitochondrial Atpase Inhibitory Factor 1 Mediates Increased Glycolysis in Pathological Cardiac Hypertrophy. Circulation, 2020, 142, .	1.6	0
28	Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2019, 13, 657-668.	4.8	187
29	Unlocking the Secrets of Mitochondria in the Cardiovascular System. Circulation, 2019, 140, 1205-1216.	1.6	91
30	Targeting NAD+ Metabolism as Interventions for Mitochondrial Disease. Scientific Reports, 2019, 9, 3073.	3.3	82
31	Cellular Interactome Dynamics during Paclitaxel Treatment. Cell Reports, 2019, 29, 2371-2383.e5.	6.4	45
32	Extending the Scope of ¹ H NMR Spectroscopy for the Analysis of Cellular Coenzyme A and Acetyl Coenzyme A. Analytical Chemistry, 2019, 91, 2464-2471.	6.5	22
33	1921-P: The Role of BCAA Catabolism in Glucose Homeostasis. Diabetes, 2019, 68, 1921-P.	0.6	0
34	NAD(H) in mitochondrial energy transduction: implications for health and disease. Current Opinion in Physiology, 2018, 3, 101-109.	1.8	20
35	Chemical Crosslinking Mass Spectrometry Analysis of Protein Conformations and Supercomplexes in Heart Tissue. Cell Systems, 2018, 6, 136-141.e5.	6.2	118
36	Failed Power Plant Turns Into Mass Murder. Circulation Research, 2018, 122, 11-13.	4.5	2

#	Article	IF	CITATIONS
37	The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function. Scientific Reports, 2018, 8, 4983.	3.3	32
38	Raising NAD in Heart Failure. Circulation, 2018, 137, 2274-2277.	1.6	42
39	Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nature Communications, 2018, 9, 2935.	12.8	115
40	Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 2018, 123, 38-45.	1.9	35
41	Mitochondrial dysfunction in pathophysiology of heart failure. Journal of Clinical Investigation, 2018, 128, 3716-3726.	8.2	498
42	Metabolic Interventions to Treat Mitochondrial Cardiomyopathy: Roles of NAD + and Protein Acetylation in Leigh Syndrome. FASEB Journal, 2018, 32, 900.2.	0.5	0
43	Abstract 543: Uncovering the Mechanisms by Which Fatty Acid Oxidation Suppresses Cardiomyocyte Hypertrophy. Circulation Research, 2018, 123, .	4.5	0
44	Abstract 275: Quantification of the Mitochondrial Protein Interactome in Failing Hearts. Circulation Research, 2018, 123, .	4.5	0
45	Abstract 417: Targeting the NAD/NADH Ratio for Heart Failure Therapy. Circulation Research, 2018, 123, .	4.5	0
46	Abstract 282: Increasing Cardiac Fatty Acid Oxidation Protects Against High Fat Diet Induced Mitochondria Dysfunction and Cardiomyopathy in Mice. Circulation Research, 2018, 123, .	4.5	1
47	Abstract 413: NAD + -dependent Pathogenic Mechanisms and Metabolic Interventions for Mitochondrial Disease and its Associated Cardiomyopathy. Circulation Research, 2018, 123, .	4.5	0
48	Abstract 411: Mitochondrial NAD(H) Signaling in Cardiac Physiology and Pathology. Circulation Research, 2018, 123, .	4.5	0
49	Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1732-1737.	7.1	165
50	Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metabolism, 2017, 25, 374-385.	16.2	289
51	The effects of fatty acid composition on cardiac hypertrophy and function in mouse models of diet-induced obesity. Journal of Nutritional Biochemistry, 2017, 46, 137-142.	4.2	20
52	Metabolism in cardiomyopathy: every substrate matters. Cardiovascular Research, 2017, 113, 411-421.	3.8	188
53	Glucose Promotes Cell Growth by Suppressing Branched-chain Amino Acid Degradation. Journal of Molecular and Cellular Cardiology, 2017, 112, 156.	1.9	1
54	Activation of γ2-AMPK Suppresses Ribosome Biogenesis and Protects Against Myocardial Ischemia/Reperfusion Injury. Circulation Research, 2017, 121, 1182-1191.	4.5	49

#	Article	IF	CITATIONS
55	Mitochondrial Maturation in Human Pluripotent Stem Cell Derived Cardiomyocytes. Stem Cells International, 2017, 2017, 1-10.	2.5	65
56	An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS ONE, 2017, 12, e0186459.	2.5	188
57	Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging, 2016, 8, 314-327.	3.1	104
58	Simultaneous Analysis of Major Coenzymes of Cellular Redox Reactions and Energy Using ex Vivo 1H NMR Spectroscopy. Analytical Chemistry, 2016, 88, 4817-4824.	6.5	53
59	Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. Journal of Molecular and Cellular Cardiology, 2016, 100, 64-71.	1.9	61
60	Normalization of NAD ⁺ Redox Balance as a Therapy for Heart Failure. Circulation, 2016, 134, 883-894.	1.6	250
61	CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nature Communications, 2016, 7, 13189.	12.8	151
62	Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell and Bioscience, 2016, 6, 25.	4.8	85
63	The Relationship Between KLF5 and PPAR \hat{l} ± in the Heart. Circulation Research, 2016, 118, 193-195.	4.5	9
64	Novel targets for mitochondrial medicine. Science Translational Medicine, 2016, 8, 326rv3.	12.4	106
65	Ketones Step to the Plate. Circulation, 2016, 133, 689-691.	1.6	59
66	Mitochondrion as a Target for Heart Failure Therapy – Role of Protein Lysine Acetylation –. Circulation Journal, 2015, 79, 1863-1870.	1.6	37
67	Glucose Transporters in Cardiac Metabolism and Hypertrophy. , 2015, 6, 331-351.		174
68	Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks. PLoS Computational Biology, 2015, 11, e1004332.	3.2	43
69	Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress. Diabetes, 2015, 64, 2817-2827.	0.6	30
70	Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death. Basic Research in Cardiology, 2014, 109, 447.	5.9	16
71	A high-carbohydrate diet lowered blood pressure in healthy Chinese male adolescents. BioScience Trends, 2014, 8, 132-137.	3.4	9
72	Elimination of NADPH Oxidase Activity Promotes Reductive Stress and Sensitizes the Heart to Ischemic Injury. Journal of the American Heart Association, 2014, 3, e000555.	3.7	62

#	Article	IF	CITATIONS
73	Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1307-H1316.	3.2	34
74	Meeting highlights from the 2013 <scp>E</scp> uropean <scp>S</scp> ociety of <scp>C</scp> ardiology <scp>H</scp> eart <scp>F</scp> ailure <scp>A</scp> ssociation <scp>W</scp> inter <scp>M</scp> eeting on <scp>T</scp> ranslational <scp>H</scp> eart <scp>F</scp> ailure <scp>R</scp> esearch. European Journal of Heart Failure, 2014, 16, 6-14.	7.1	1
75	Mutation in the γ2-Subunit of AMP-Activated Protein Kinase Stimulates Cardiomyocyte Proliferation and Hypertrophy Independent of Glycogen Storage. Circulation Research, 2014, 114, 966-975.	4.5	63
76	Abstract 19826: Cardiac DGAT1 Deficiency Decreases Triglyceride Turnover and Alters Substrate Utilization. Circulation, 2014, 130, .	1.6	0
77	Mitochondrial Complex I Deficiency Increases Protein Acetylation and Accelerates Heart Failure. Cell Metabolism, 2013, 18, 239-250.	16.2	376
78	Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes. Circulation Research, 2013, 113, 603-616.	4.5	591
79	Sample preparation methodology for mouse heart metabolomics using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Talanta, 2013, 108, 123-130.	5.5	18
80	Broad Suppression of NADPH Oxidase Activity Exacerbates Ischemia/Reperfusion Injury Through Inadvertent Downregulation of Hypoxia-inducible Factor-1α and Upregulation of Peroxisome Proliferator–activated Receptor-α. Circulation Research, 2013, 112, 1135-1149.	4.5	127
81	Substrain specific response to cardiac pressure overload in C57BL/6 mice. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H397-H402.	3.2	74
82	Rescue of heart lipoprotein lipase-knockout mice confirms a role for triglyceride in optimal heart metabolism and function. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1339-E1347.	3.5	17
83	Global Proteomics and Pathway Analysis of Pressure-Overload–Induced Heart Failure and Its Attenuation by Mitochondrial-Targeted Peptides. Circulation: Heart Failure, 2013, 6, 1067-1076.	3.9	126
84	Transgenic overexpression of ribonucleotide reductase improves cardiac performance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6187-6192.	7.1	40
85	Cardiac-Specific Deletion of Acetyl CoA Carboxylase 2 Prevents Metabolic Remodeling During Pressure-Overload Hypertrophy. Circulation Research, 2012, 111, 728-738.	4.5	214
86	Response to Letter Regarding Article, "Impaired Mitochondrial Biogenesis Precedes Heart Failure in Right Ventricular Hypertrophy in Congenital Heart Disease― Circulation: Heart Failure, 2012, 5, .	3.9	0
87	Transcript variant dictates Prkag2 cardiomyopathy?. Journal of Molecular and Cellular Cardiology, 2012, 53, 317-319.	1.9	1
88	AMPK isoform expression in the normal and failing hearts. Journal of Molecular and Cellular Cardiology, 2012, 52, 1066-1073.	1.9	59
89	Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. Journal of Clinical Investigation, 2012, 122, 267-279.	8.2	135
90	Targeting AMPK for cardiac protection: Opportunities and challenges. Journal of Molecular and Cellular Cardiology, 2011, 51, 548-553.	1.9	72

#	Article	IF	CITATIONS
91	Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. Journal of Physiology, 2011, 589, 5193-5211.	2.9	53
92	Glucose metabolism and cardiac hypertrophy. Cardiovascular Research, 2011, 90, 194-201.	3.8	241
93	Improvement of Cardiac Functions by Chronic Metformin Treatment Is Associated With Enhanced Cardiac Autophagy in Diabetic OVE26 Mice. Diabetes, 2011, 60, 1770-1778.	0.6	433
94	Impaired Mitochondrial Biogenesis Precedes Heart Failure in Right Ventricular Hypertrophy in Congenital Heart Disease. Circulation: Heart Failure, 2011, 4, 707-713.	3.9	94
95	Compromised Myocardial Energetics in Hypertrophied Mouse Hearts Diminish the Beneficial Effect of Overexpressing SERCA2a. Journal of Biological Chemistry, 2011, 286, 10163-10168.	3.4	35
96	Assessment of Cardiac Function and Energetics in Isolated Mouse Hearts Using ³¹ P NMR Spectroscopy. Journal of Visualized Experiments, 2010, , .	0.3	24
97	Defective DNA Replication Impairs Mitochondrial Biogenesis In Human Failing Hearts. Circulation Research, 2010, 106, 1541-1548.	4.5	192
98	Increased Glucose Uptake and Oxidation in Mouse Hearts Prevent High Fatty Acid Oxidation but Cause Cardiac Dysfunction in Diet-Induced Obesity. Circulation, 2009, 119, 2818-2828.	1.6	168
99	Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure. Circulation Research, 2009, 104, 403-411.	4.5	357
100	Cardioprotective effect of adiponectin is partially mediated by its AMPK-independent antinitrative action. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E384-E391.	3.5	44
101	Suppression of 5′-AMP-activated protein kinase activity does not impair recovery of contractile function during reperfusion of ischemic hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H313-H321.	3.2	32
102	AMP-Activated Protein Kinase Deficiency Enhances Myocardial Ischemia/Reperfusion Injury but Has Minimal Effect on the Antioxidant/Antinitrative Protection of Adiponectin. Circulation, 2009, 119, 835-844.	1.6	128
103	Metabolic Therapy at the Crossroad: How to Optimize Myocardial Substrate Utilization?. Trends in Cardiovascular Medicine, 2009, 19, 201-207.	4.9	35
104	Increased Glucose Transport Prevents the Development of Contractile Dysfunctions in Diabetic Hearts. FASEB Journal, 2009, 23, 856.9.	0.5	0
105	Acute Metformin Therapy Confers Cardioprotection Against Myocardial Infarction Via AMPK-eNOS–Mediated Signaling. Diabetes, 2008, 57, 696-705.	0.6	373
106	How Does Folic Acid Cure Heart Attacks?. Circulation, 2008, 117, 1772-1774.	1.6	11
107	Effects of Insulin Replacements, Inhibitors of Angiotensin, and PKCÂ's Actions to Normalize Cardiac Gene Expression and Fuel Metabolism in Diabetic Rats. Diabetes, 2007, 56, 1410-1420.	0.6	49
108	Long-Term Effects of Increased Glucose Entry on Mouse Hearts During Normal Aging and Ischemic Stress. Circulation, 2007, 116, 901-909.	1.6	112

#	Article	IF	CITATIONS
109	Proposed Regulation of Gene Expression by Glucose in Rodent Heart. Gene Regulation and Systems Biology, 2007, 1, GRSB.S222.	2.3	65
110	A PRKAG2 mutation causes biphasic changes in myocardial AMPK activity and does not protect against ischemia. Biochemical and Biophysical Research Communications, 2007, 360, 381-387.	2.1	36
111	AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K+ channels. Journal of Cellular Physiology, 2007, 210, 224-236.	4.1	122
112	Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage. Journal of Clinical Investigation, 2007, 117, 1432-1439.	8.2	95
113	Effects of chronic Akt activation on glucose uptake in the heart. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E789-E797.	3.5	49
114	Interaction of Insulin and AMPK in the Ischemic Heart. Circulation Research, 2006, 99, 3-5.	4.5	190
115	Myocardial contractile efficiency increases in proportion to a fetal enzyme shift in chronically infarcted rat hearts. Basic Research in Cardiology, 2005, 100, 171-178.	5.9	2
116	Increased α2 Subunit–Associated AMPK Activity and PRKAG2 Cardiomyopathy. Circulation, 2005, 112, 3140-3148.	1.6	83
117	N488I Mutation of the Î ³ 2-Subunit Results in Bidirectional Changes in AMP-Activated Protein Kinase Activity. Circulation Research, 2005, 97, 323-328.	4.5	43
118	Another Role for the Celebrity. Circulation Research, 2005, 96, 139-140.	4.5	31
119	Decreased Contractile and Metabolic Reserve in Peroxisome Proliferator–Activated Receptor-α–Null Hearts Can Be Rescued by Increasing Glucose Transport and Utilization. Circulation, 2005, 112, 2339-2346.	1.6	148
120	Functional role of AMP-activated protein kinase in the heart during exercise. FEBS Letters, 2005, 579, 2045-2050.	2.8	60
121	Mechanisms for Increased Glycolysis in the Hypertrophied Rat Heart. Hypertension, 2004, 44, 662-667.	2.7	200
122	Transcriptional regulation of energy substrate metabolism in normal and hypertrophied heart. Current Hypertension Reports, 2003, 5, 454-458.	3.5	36
123	Glucose Metabolism and Energy Homeostasis in Mouse Hearts Overexpressing Dominant Negative α2 Subunit of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2003, 278, 28372-28377.	3.4	197
124	Cardiac-Specific Overexpression of GLUT1 Prevents the Development of Heart Failure Attributable to Pressure Overload in Mice. Circulation, 2002, 106, 2125-2131.	1.6	282
125	Endogenous nitric oxide enhances coupling between O2 consumption and ATP synthesis in guinea pig hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H838-H846.	3.2	42
126	Cardiac-Specific Expression of Heme Oxygenase-1 Protects Against Ischemia and Reperfusion Injury in Transgenic Mice. Circulation Research, 2001, 89, 168-173.	4.5	385

Rong Tian

#	Article	IF	CITATIONS
127	Responses of GLUT4-Deficient Hearts to Ischemia Underscore the Importance of Glycolysis. Circulation, 2001, 103, 2961-2966.	1.6	197
128	Increased Adenosine Monophosphate–Activated Protein Kinase Activity in Rat Hearts With Pressure-Overload Hypertrophy. Circulation, 2001, 104, 1664-1669.	1.6	278
129	Long-term expression of protein kinase C in adult mouse hearts improves postischemic recovery. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 13536-13541.	7.1	26
130	The Molecular Energetics of the Failing Heart from Animal Models―Small Animal Models. , 1999, 4, 245-253.		20
131	Altered Creatine Kinase Enzyme Kinetics in Diabetic Cardiomyopathy. A31P NMR Magnetization Transfer Study of the Intact Beating Rat Heart. Journal of Molecular and Cellular Cardiology, 1999, 31, 2175-2189.	1.9	43
132	Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. Journal of Clinical Investigation, 1999, 104, 1703-1714.	8.2	310
133	Thermodynamic Limitation for the Sarcoplasmic Reticulum Ca2+-ATPase Contributes to Impaired Contractile Reserve in Heartsa. Annals of the New York Academy of Sciences, 1998, 853, 322-324.	3.8	5
134	Energetic basis of diastolic dysfunction. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1998, 6, 129-131.	2.0	4
135	Energetic basis of diastolic dysfunction. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1998, 6, 129-131.	2.0	Ο
136	Impaired Cardiac Energetics in Mice Lacking Muscle-Specific Isoenzymes of Creatine Kinase. Circulation Research, 1998, 82, 898-907.	4.5	178
137	Thermodynamic limitation for Ca2+ handling contributes to decreased contractile reserve in rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2064-H2071.	3.2	35
138	Failure to Maintain a Low ADP Concentration Impairs Diastolic Function in Hypertrophied Rat Hearts. Circulation, 1997, 96, 1313-1319.	1.6	106
139	Long-term beta-blocker treatment prevents chronic creatine kinase and lactate dehydrogenase system changes in rat hearts after myocardial infarction. Journal of the American College of Cardiology, 1996, 27, 487-493.	2.8	36
140	Alterations of Performance and Oxygen Utilization in Chronically Infarcted Rat Hearts. Journal of Molecular and Cellular Cardiology, 1996, 28, 321-330.	1.9	21
141	Depletion of Energy Reserve via the Creatine Kinase Reaction During the Evolution of Heart Failure in Cardiomyopathic Hamsters. Journal of Molecular and Cellular Cardiology, 1996, 28, 755-765.	1.9	95
142	Regional Biochemical Remodeling in Non-infarcted Tissue of Rat Heart Post-myocardial Infarction. Journal of Molecular and Cellular Cardiology, 1996, 28, 1531-1538.	1.9	29
143	Role of Extracellular and Intracellular Acidosis for Hypercapnia-Induced Inhibition of Tension of Isolated Rat Cerebral Arteries. Circulation Research, 1995, 76, 269-275.	4.5	64
144	Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction Journal of Clinical Investigation, 1995, 95, 1092-1100.	8.2	208

#	Article	IF	CITATIONS
145	Effects of endothelin-1 in the isolated heart in ischemia/reperfusion and hypoxia/reoxygenation injury. Journal of Molecular and Cellular Cardiology, 1991, 23, 1397-1409.	1.9	49
146	Angiotensin I conversion and coronary constriction by angiotensin II in ischemic and hypoxic isolated rat hearts. European Journal of Pharmacology, 1991, 203, 71-77.	3.5	7
147	Mechanisms behind the Relaxing Effect of Furosemide on the Isolated Rabbit Ear Artery. Basic and Clinical Pharmacology and Toxicology, 1990, 67, 406-410.	0.0	20