Victor Bense

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4155731/publications.pdf Version: 2024-02-01

VICTOR RENSE

#	Article	IF	CITATIONS
1	Effects of fire history on thermal regimes of permafrost in the northern Da Xing'anling Mountains, NE China. Geoderma, 2022, 410, 115670.	5.1	9
2	Permafrost Degradation and Its Hydrogeological Impacts. Water (Switzerland), 2022, 14, 372.	2.7	33
3	Sea-level rise and warming mediate coastal groundwater discharge in the Arctic. Environmental Research Letters, 2022, 17, 045027.	5.2	9
4	Inferring Suspended Sediment Carbon Content and Particle Size at High Frequency From the Optical Response of a Submerged Spectrometer. Water Resources Research, 2022, 58, .	4.2	3
5	Inferring Aquitard Hydraulic Conductivity Using Transient Temperatureâ€Depth Profiles Impacted by Ground Surface Warming. Water Resources Research, 2022, 58, .	4.2	2
6	Dynamics of rare earth elements and associated major and trace elements during Douglas-fir (<i>Pseudotsuga menziesii</i>) and European beech (<i>Fagus sylvatica</i> L.) litter degradation. Biogeosciences, 2022, 19, 3111-3129.	3.3	2
7	Using Heat to Trace Vertical Water Fluxes in Sediment Experiencing Concurrent Tidal Pumping and Groundwater Discharge. Water Resources Research, 2021, 57, e2020WR027904.	4.2	20
8	Invited perspective: What lies beneath a changing Arctic?. Cryosphere, 2021, 15, 479-484.	3.9	32
9	Streamflow Changes in the Headwater Area of Yellow River, NE Qinghai-Tibet Plateau during 1955–2040 and Their Implications. Water (Switzerland), 2021, 13, 1360.	2.7	4
10	Modeling Reactive Solute Transport in Permafrostâ€Affected Groundwater Systems. Water Resources Research, 2021, 57, e2020WR028771.	4.2	19
11	Inferring Permafrost Active Layer Thermal Properties From Numerical Model Optimization. Geophysical Research Letters, 2021, 48, e2021GL093306.	4.0	7
12	Saltwater Intrusion Intensifies Coastal Permafrost Thaw. Geophysical Research Letters, 2021, 48, e2021GL094776.	4.0	14
13	Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: An example for the Upper Citarum basin. Journal of Hydrology: Regional Studies, 2021, 37, 100911.	2.4	10
14	Comparison of three types of fiber optic sensors for temperature monitoring in a groundwater flow simulator. Sensors and Actuators A: Physical, 2021, 331, 112682.	4.1	11
15	Hydrogeological evaluation of managed aquifer recharge in a glacial moraine complex using long-term groundwater data analysis. Hydrogeology Journal, 2020, 28, 1787-1807.	2.1	2
16	Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma, 2020, 376, 114531.	5.1	38
17	Parameter sensitivity analysis of a two-dimensional cryo-hydrogeological numerical model of degrading permafrost near Umiujaq (Nunavik, Canada). Hydrogeology Journal, 2020, 28, 905-919.	2.1	10
18	Repeated Subsurface Thermal Profiling to Reveal Temporal Variability in Deep Groundwater Flow Conditions. Water Resources Research, 2020, 56, e2019WR026913.	4.2	10

VICTOR BENSE

#	Article	IF	CITATIONS
19	Impacts of progressive urban expansion on subsurface temperatures in the city of Amsterdam (The) Tj ETQq1	1 0.784314 2.1	rg月1/Overlo
20	Numerical modelling of permafrost spring discharge and open-system pingo formation induced by basal permafrost aggradation. Cryosphere, 2020, 14, 4627-4651.	3.9	9
21	Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau. Geoderma, 2019, 333, 57-68.	5.1	34
22	Determining the Relation between Groundwater Flow Velocities and Measured Temperature Differences Using Active Heating-Distributed Temperature Sensing. Water (Switzerland), 2019, 11, 1619.	2.7	13
23	Using transient temperature–depth profiles to assess vertical groundwater flow across semi-confining layers in the Chianan coastal plain aquifer systeme, southern Taiwan. Hydrogeology Journal, 2019, 27, 2155-2166.	2.1	3
24	Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW China. Hydrogeology Journal, 2019, 27, 1725-1737.	2.1	15
25	Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China. Advances in Climate Change Research, 2019, 10, 225-239.	5.1	47
26	Dissolved organic carbon in permafrost regions: A review. Science China Earth Sciences, 2019, 62, 349-364.	5.2	41
27	Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1329.	6.5	50
28	An overview of fault zone permeabilities and groundwater level steps in the Roer Valley Rift System. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2019, 98, .	0.9	3
29	Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. Advances in Water Resources, 2018, 114, 196-218.	3.8	91
30	Combined Geophysical Measurements Provide Evidence for Unfrozen Water in Permafrost in the Adventdalen Valley in Svalbard. Geophysical Research Letters, 2018, 45, 7606-7614.	4.0	34
31	Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China. Science of the Total Environment, 2018, 618, 1033-1045.	8.0	100
32	Rethinking the Use of Seabed Sediment Temperature Profiles to Trace Submarine Groundwater Flow. Water Resources Research, 2018, 54, 4595-4614.	4.2	14
33	Interpreting Repeated Temperatureâ€Đepth Profiles for Groundwater Flow. Water Resources Research, 2017, 53, 8639-8647.	4.2	21
34	Tracking the Subsurface Signal of Decadal Climate Warming to Quantify Vertical Groundwater Flow Rates. Geophysical Research Letters, 2017, 44, 12,244.	4.0	22
35	Terrestrial water load and groundwater fluctuation in the Bengal Basin. Scientific Reports, 2017, 7, 3872.	3.3	25
36	Influences of Frozen Ground and Climate Change on Hydrological Processes in an Alpine Watershed: A Case Study in the Upstream Area of the Hei'he River, Northwest China. Permafrost and Periglacial Processes, 2017, 28, 420-432.	3.4	47

VICTOR BENSE

#	Article	IF	CITATIONS
37	Fault zone hydrogeology: introduction to the special issue. Geofluids, 2016, 16, 655-657.	0.7	11
38	Distributed <scp>T</scp> emperature <scp>S</scp> ensing as a downhole tool in hydrogeology. Water Resources Research, 2016, 52, 9259-9273.	4.2	91
39	Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany. Hydrogeology Journal, 2016, 24, 99-108.	2.1	17
40	Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux. Agricultural and Forest Meteorology, 2016, 220, 207-215.	4.8	28
41	Thermal-plume fibre optic tracking (T-POT) test for flow velocity measurement in groundwater boreholes. Geoscientific Instrumentation, Methods and Data Systems, 2015, 4, 197-202.	1.6	17
42	Active-distributed temperature sensing to continuously quantify vertical flow in boreholes. Water Resources Research, 2014, 50, 3706-3713.	4.2	59
43	3D hydro-mechanically coupled groundwater flow modelling of Pleistocene glaciation effects. Computers and Geosciences, 2014, 67, 89-99.	4.2	14
44	Impacts of glacially recharged groundwater flow systems on talik evolution. Journal of Geophysical Research F: Earth Surface, 2014, 119, 758-778.	2.8	23
45	Potential controls on cold-season river flow behavior in subarctic river basins of Siberia. Journal of Hydrology, 2013, 489, 214-226.	5.4	16
46	Fault zone hydrogeology. Earth-Science Reviews, 2013, 127, 171-192.	9.1	484
47	Characterizing groundwater flow and heat transport in fractured rock using fiberâ€optic distributed temperature sensing. Geophysical Research Letters, 2013, 40, 2055-2059.	4.0	110
48	Geologic isolation of nuclear waste at high latitudes: the role of ice sheets. Geofluids, 2012, 12, 1-6.	0.7	4
49	Models of iceâ€sheet hydrogeologic interactions: a review. Geofluids, 2012, 12, 58-78.	0.7	39
50	Sulfuric Acid Speleogenesis Associated with a Glacially Driven Groundwater System—Paleo-spring "Pipes―at Borup Fiord Pass, Nunavut. Astrobiology, 2012, 12, 19-28.	3.0	21
51	Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. Journal of Geophysical Research, 2012, 117, .	3.3	113
52	Transient nature of Arctic spring systems driven by subglacial meltwater. Geophysical Research Letters, 2012, 39, .	4.0	19
53	Uncertainty in 1D Heat-Flow Analysis to Estimate Groundwater Discharge to a Stream. Ground Water, 2011, 49, 336-347.	1.3	56
54	Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece. Journal of Structural Geology, 2011, 33, 1554-1568.	2.3	43

VICTOR BENSE

#	Article	IF	CITATIONS
55	Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin. International Journal of Greenhouse Gas Control, 2010, 4, 840-854.	4.6	75
56	Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophysical Research Letters, 2009, 36, .	4.0	169
57	Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. Journal of Geophysical Research, 2008, 113, .	3.3	71
58	Thermal anomalies indicate preferential flow along faults in unconsolidated sedimentary aquifers. Geophysical Research Letters, 2008, 35, .	4.0	50
59	Impact of horizontal groundwater flow and localized deforestation on the development of shallow temperature anomalies. Journal of Geophysical Research, 2007, 112, .	3.3	33
60	Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems. Reviews of Geophysics, 2007, 45, .	23.0	127
61	Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research, 2006, 42, .	4.2	172
62	The effect of fault relay and clay smearing on groundwater flow patterns in the Lower Rhine Embayment. Basin Research, 2004, 16, 397-411.	2.7	61
63	Temporal and spatial variations of shallow subsurface temperature as a record of lateral variations in groundwater flow. Journal of Geophysical Research, 2004, 109, .	3.3	67
64	Hydrogeological aspects of fault zones on various scales in theRoer Valley Rift System. Journal of Geochemical Exploration, 2003, 78-79, 317-320.	3.2	13
65	Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeology Journal, 2003, 11, 319-332.	2.1	108
66	Assessing Textural Variation in Laminated Sands Using Digital Image Analysis of Thin Sections. Journal of Sedimentary Research, 2003, 73, 133-143.	1.6	17
67	Temporal and spatial variability of cross-fault groundwater-level differences: the impact of fault-induced permeability reduction, precipitation and evapotranspiration. Hydrogeology Journal, 0, , 1.	2.1	0