Andrés Clemente-Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4155033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide sequencing analysis of Sgs1, Exo1, Rad51, and Srs2 in DNA repair by homologous recombination. Cell Reports, 2022, 38, 110201.	6.4	3
2	Regulation of Eukaryotic RNAPs Activities by Phosphorylation. Frontiers in Molecular Biosciences, 2021, 8, 681865.	3.5	8
3	Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes, 2020, 11, 71.	2.4	20
4	Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. International Journal of Molecular Sciences, 2020, 21, 446.	4.1	57
5	PP4 phosphatase cooperates in recombinational DNA repair by enhancing double-strand break end resection. Nucleic Acids Research, 2019, 47, 10706-10727.	14.5	17
6	Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress, 2019, 3, 70-85.	3.2	36
7	Stabilization of the metaphase spindle by Cdc14 is required for recombinational <scp>DNA</scp> repair. EMBO Journal, 2017, 36, 79-101.	7.8	26
8	Nucleolar Condensation: A New Mechanism to Control Mitotic Exit. Current Biology, 2017, 27, R1220-R1222.	3.9	2
9	Cdc14 and Chromosome Condensation: Evaluation of the Recruitment of Condensin to Genomic Regions. Methods in Molecular Biology, 2017, 1505, 229-243.	0.9	1
10	Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes and Development, 2016, 30, 1339-1356.	5.9	61
11	Cdc14 targets the Holliday junction resolvase Yen1 to the nucleus in early anaphase. Cell Cycle, 2014, 13, 1392-1399.	2.6	33
12	Post-replicative repair involves separase-dependent removal of the kleisin subunit of cohesin. Nature, 2013, 493, 250-254.	27.8	48
13	The NDR/LATS Kinase Cbk1 Controls the Activity of the Transcriptional Regulator Bcr1 during Biofilm Formation in Candida albicans. PLoS Pathogens, 2012, 8, e1002683.	4.7	36
14	SUMOylation of the α-Kleisin Subunit of Cohesin Is Required for DNA Damage-Induced Cohesion. Current Biology, 2012, 22, 1564-1575.	3.9	64
15	Cdc14 phosphatase promotes segregation of telomeres through repression of RNA polymerase II transcription. Nature Cell Biology, 2011, 13, 1450-1456.	10.3	67
16	Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature, 2009, 458, 219-222.	27.8	115
17	Smc5–Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nature Cell Biology, 2006, 8, 1032-1034.	10.3	170
18	The Cdc14p phosphatase affects late cell-cycle events and morphogenesis in Candida albicans. Journal of Cell Science, 2006, 119, 1130-1143.	2.0	57

#	Article	IF	CITATIONS
19	The Mitotic Cyclins Clb2p and Clb4p Affect Morphogenesis inCandida albicans. Molecular Biology of the Cell, 2005, 16, 3387-3400.	2.1	90