Jaturong Kumla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4154837/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity, 2019, 97, 1-136.	12.3	459
2	Outline of Fungi and fungus-like taxa – 2021. Mycosphere, 2022, 13, 53-453.	6.1	160
3	Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules, 2020, 25, 2811.	3.8	121
4	Fungal diversity notes 1387–1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity, 2021, 111, 1-335.	12.3	88
5	Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods, 2016, 27, 352-364.	3.4	74
6	Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS ONE, 2019, 14, e0222187.	2.5	64
7	Natural Bioactive Compounds from Fungi as Potential Candidates for Protease Inhibitors and Immunomodulators to Apply for Coronaviruses. Molecules, 2020, 25, 1800.	3.8	56
8	The numbers of fungi: are the most speciose genera truly diverse?. Fungal Diversity, 2022, 114, 387-462.	12.3	52
9	Bioprocess for Production, Characteristics, and Biotechnological Applications of Fungal Phytases. Frontiers in Microbiology, 2020, 11, 188.	3.5	51
10	Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS ONE, 2018, 13, e0205070.	2.5	48
11	Volatile Organic Compound from Trichoderma asperelloides TSU1: Impact on Plant Pathogenic Fungi. Journal of Fungi (Basel, Switzerland), 2021, 7, 187.	3.5	38
12	Evaluation of a Newly Identified Endophytic Fungus, Trichoderma phayaoense for Plant Growth Promotion and Biological Control of Gummy Stem Blight and Wilt of Muskmelon. Frontiers in Microbiology, 2021, 12, 634772.	3.5	34
13	Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. Biology, 2022, 11, 569.	2.8	28
14	First report of leaf spot disease on oil palm caused by Pestalotiopsis theae in Thailand. Journal of General Plant Pathology, 2013, 79, 277-279.	1.0	27
15	Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from northern Thailand. Annals of Microbiology, 2014, 64, 707-720.	2.6	27
16	Evaluation of Muscodor cinnamomi as an egg biofumigant for the reduction of microorganisms on eggshell surfaces and its effect on egg quality. International Journal of Food Microbiology, 2017, 244, 52-61.	4.7	25
17	Evaluation of Multifarious Plant Growth Promoting Trials of Yeast Isolated from the Soil of Assam Tea (Camellia sinensis var. assamica) Plantations in Northern Thailand. Microorganisms, 2020, 8, 1168.	3.6	25
18	Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Applied Microbiology and Biotechnology, 2019, 103, 6973-6987.	3.6	24

JATURONG KUMLA

#	Article	IF	CITATIONS
19	Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand. PLoS ONE, 2020, 15, e0227478.	2.5	24
20	The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis. Mycorrhiza, 2016, 26, 333-343.	2.8	21
21	Basidiome formation of an edible wild, putatively ectomycorrhizal fungus, <i>Phlebopus portentosus</i> without host plant. Mycologia, 2012, 104, 597-603.	1.9	20
22	Comparative Evaluation of Chemical Composition, Phenolic Compounds, and Antioxidant and Antimicrobial Activities of Tropical Black Bolete Mushroom Using Different Preservation Methods. Foods, 2021, 10, 781.	4.3	20
23	Valorization of Lignocellulosic Wastes to Produce Phytase and Cellulolytic Enzymes from a Thermophilic Fungus, Thermoascus aurantiacus SL16W, under Semi-Solid State Fermentation. Journal of Fungi (Basel, Switzerland), 2021, 7, 286.	3.5	18
24	Improvement of yield for a tropical black bolete, Phlebopus portentosus, cultivation in northern Thailand. Mycoscience, 2015, 56, 114-117.	0.8	15
25	First report of gummy stem blight caused by <i>Stagonosporopsis cucurbitacearum</i> on cantaloupe in Thailand. Canadian Journal of Plant Pathology, 2018, 40, 306-311.	1.4	15
26	Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Pholiota adiposa, in Solid State Fermentation. Journal of Fungi (Basel,) Tj ETQq0 0 0 rg	gBT /@.ærloo	ck 1104Tf 50 45
27	Bioactive compounds content and their biological properties of acetone extract of <i>Cuscuta reflexa</i> Roxb. grown on various host plants. Natural Product Research, 2019, 33, 544-547.	1.8	13
28	Evaluation of Native Entomopathogenic Fungi for the Control of Fall Armyworm (Spodoptera) Tj ETQq0 0 0 rg	BT /Overlocl 3.5	۱۵ Tf 50 38 13
29	Apophysomyces thailandensis (Mucorales, Mucoromycota), a new species isolated from soil in northern Thailand and its solubilization of non-soluble minerals. MycoKeys, 2019, 45, 75-92.	1.9	12
30	Morphological and Molecular Identification of Plant Pathogenic Fungi Associated with Dirty Panicle Disease in Coconuts (Cocos nucifera) in Thailand. Journal of Fungi (Basel, Switzerland), 2022, 8, 335.	3.5	12
31	Leaf spot on cattleya orchid caused by <i>Neoscytalidium orchidacearum</i> in Thailand. Canadian Journal of Plant Pathology, 2018, 40, 109-114.	1.4	11
32	First report of fruit rot on cantaloupe caused by Fusarium equiseti in Thailand. Journal of General Plant Pathology, 2019, 85, 295-300.	1.0	11
33	Growth Enhancement of Arabidopsis (Arabidopsis thaliana) and Onion (Allium cepa) With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Aspergillus Section Nigri. Frontiers in Microbiology, 2021, 12, 705896.	3.5	10
34	Optimization of high endoglucanase yields production from polypore fungus, Microporus xanthopus strain KA038 under solid-state fermentation using green tea waste. Biology Open, 2019, 8, .	1.2	10
35	Characterization of Polysaccharides from Wild Edible Mushrooms from Thailand and Their Antioxidant, Antidiabetic, and Antihypertensive Activities. International Journal of Medicinal Mushrooms, 2020, 22, 221-233.	1.5	10
36	Molecular Phylogenetic Diversity and Biological Characterization of Diaporthe Species Associated with Leaf Spots of Camellia sinensis in Taiwan. Plants, 2021, 10, 1434.	3.5	9

JATURONG KUMLA

#	Article	IF	CITATIONS
37	First report of Alternaria leaf blight disease on oil palm caused by Alternaria longipes in Thailand. Phytoparasitica, 2015, 43, 57-59.	1.2	8
38	Filamentous fungi with high paraquatâ€degrading activity isolated from contaminated agricultural soils in northern Thailand. Letters in Applied Microbiology, 2021, 72, 467-475.	2.2	8
39	A Taxonomic Appraisal of Bambusicolous Fungi in Occultibambusaceae (Pleosporales,) Tj ETQq1 1 0.784314 rgBT	- Overloch 2.4	ء 10 Tf 50 6
40	Phytochemical Analysis and Evaluation of Antioxidant and Biological Activities of Extracts from Three Clauseneae Plants in Northern Thailand. Plants, 2021, 10, 117.	3.5	7
41	A new whitish truffle, Tuber thailandicum from northern Thailand and its ectomycorrhizal association. Mycological Progress, 2015, 14, 1.	1.4	6
42	First report of Phoma leaf spot disease on cherry palm caused by <i>Phoma herbarum</i> in Thailand. Canadian Journal of Plant Pathology, 2016, 38, 103-106.	1.4	6
43	Isolation, Characterization, and Efficacy of Actinobacteria Associated with Arbuscular Mycorrhizal Spores in Promoting Plant Growth of Chili (Capsicum flutescens L.). Microorganisms, 2021, 9, 1274.	3.6	6
44	First Report of <i>Lasiodiplodia theobromae</i> Causing Fruit Rot on Melon (<i>Cucumis melo</i>) in Thailand. Plant Disease, 2020, 104, 280-280.	1.4	6
45	Morphological and molecular evidence support a new truffle, Tuber lannaense, from Thailand. Mycological Progress, 2016, 15, 827-834.	1.4	5
46	<i>Tuber magnatum</i> in Thailand, a first report from Asia. Mycotaxon, 2017, 132, 635-642.	0.3	5
47	Multigene Phylogeny and Morphology Reveal Three Novel Species and a Novel Record of Agaricus From Northern Thailand. Frontiers in Microbiology, 2021, 12, 650513.	3.5	5
48	Morphology Characterization, Molecular Identification, and Pathogenicity of Fungal Pathogen Causing Kaffir Lime Leaf Blight in Northern Thailand. Plants, 2022, 11, 273.	3.5	5
49	Two New Amanita Species in Section Amanita from Thailand. Diversity, 2022, 14, 101.	1.7	5
50	New report of leaf blight disease on eucalyptus (<i>Eucalyptus camaldulensis</i>) caused by <i>Pestalotiopsis virgatula</i> in Thailand. Canadian Journal of Plant Pathology, 2012, 34, 306-309.	1.4	4
51	A New Report on Edible Tropical Bolete, <i>Phlebopus spongiosus </i> in Thailand and Its Fruiting Body Formation without the Need for a Host Plant. Mycobiology, 2020, 48, 263-275.	1.7	4
52	Spegazzinia camelliae sp. nov. (Didymosphaeriaceae, Pleosprales), a new endophytic fungus from northern Thailand . Phytotaxa, 2021, 483, 117-128.	0.3	4
53	Clitopilus lampangensis (Agaricales, Entolomataceae), a new species from northern Thailand. MycoKeys, 2019, 58, 69-82.	1.9	4
54	Identification and Pathogenicity of Paramyrothecium Species Associated with Leaf Spot Disease in Northern Thailand. Plants, 2022, 11, 1445.	3.5	4

JATURONG KUMLA

#	Article	IF	CITATIONS
55	First report of sour rot on tomato caused by Galactomyces reessii in Thailand. Journal of General Plant Pathology, 2016, 82, 228-231.	1.0	3
56	Daldiniaeschsone A, a Rare Tricyclic Polyketide Having a Chromone Unit Fused to a δ-Lactone and Its Symmetrical Biphenyl Dimer, Daldiniaeschsone B, from an Endophytic Fungus Daldinia eschscholtzii SDBR-CMUNKC745. Journal of Fungi (Basel, Switzerland), 2021, 7, 358.	3.5	3
57	An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. Journal of Fungi (Basel, Switzerland), 2021, 7, 957.	3.5	3
58	First Report of <i>Colletotrichum theobromicola</i> Causing Centro Anthracnose Leaf Spot in Thailand. Plant Disease, 2022, 106, 1306.	1.4	3
59	Soil Metabarcoding Offers a New Tool for the Investigation and Hunting of Truffles in Northern Thailand. Journal of Fungi (Basel, Switzerland), 2021, 7, 293.	3.5	2
60	Cultivation of Edible Tropical Bolete, Phlebopus spongiosus, in Thailand and Yield Improvement by High-Voltage Pulsed Stimulation. Agronomy, 2022, 12, 115.	3.0	2
61	Two novel species of Marasmius (Marasmiaceae, Agaricales) from lower northern Thailand. Phytotaxa, 2019, 403, 111.	0.3	1
62	Cunninghamella saisamornae (Cunninghamellaceae, Mucorales), a new soil fungus from northern Thailand. Phytotaxa, 2021, 509, .	0.3	1
63	Pleurotus sirindhorniae (Pleurotaceae, Agaricales), a new species from northern Thailand . Phytotaxa, 2020, 460, 285-295.	0.3	1
64	Two Novel Species and Two New Records within the Genus Pluteus (Agaricomycetes, Agaricales) from Thailand. Diversity, 2022, 14, 156.	1.7	1
65	Taxonomic and Phylogenetic Characterizations Reveal Four New Species, Two New Asexual Morph Reports, and Six New Country Records of Bambusicolous Roussoella from China. Journal of Fungi (Basel, Switzerland), 2022, 8, 532.	3.5	1
66	First Report of Cape Gooseberry Scab Caused by <i>Cladosporium exasperatum</i> in Thailand. Plant Disease, 0, , .	1.4	0