Joseph F Cheer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/41546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nature Reviews Neuroscience, 2022, 23, 191-203.	10.2	26
2	Regulation of glutamate homeostasis in the nucleus accumbens by astrocytic CB1 receptors and its role in cocaine-motivated behaviors. Addiction Neuroscience, 2022, 3, 100022.	1.3	1
3	A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking and Addiction. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a039305.	6.2	24
4	Choosing the right drug: status and future of endocannabinoid research for the prevention of drug-seeking reinstatement. Current Opinion in Pharmacology, 2021, 56, 29-38.	3.5	8
5	Chronic cannabinoid exposure produces tolerance to the dopamine releasing effects of WIN 55,212–2 and heroin in adult male rats. Neuropharmacology, 2021, 182, 108374.	4.1	11
6	Mesolimbic dopamine dysregulation as a signature of information processing deficits imposed by prenatal THC exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110128.	4.8	20
7	Glutamatergic input from the insula to the ventral bed nucleus of the stria terminalis controls rewardâ€related behavior. Addiction Biology, 2021, 26, e12961.	2.6	14
8	Repeated binge ethanol drinking enhances electrical activity of central amygdala corticotropin releasing factor neurons in vivo. Neuropharmacology, 2021, 189, 108527.	4.1	9
9	Modulating the Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System. Trends in Neurosciences, 2021, 44, 464-477.	8.6	52
10	Chronic Augmentation of Endocannabinoid Levels Persistently Increases Dopaminergic Encoding of Reward Cost and Motivation. Journal of Neuroscience, 2021, 41, 6946-6953.	3.6	6
11	Cocaine-induced increases in motivation require 2-arachidonoylglycerol mobilization and CB1 receptor activation in the ventral tegmental area. Neuropharmacology, 2021, 193, 108625.	4.1	4
12	Activation of the mGlu1 metabotropic glutamate receptor has antipsychotic-like effects and is required for efficacy of M4 muscarinic receptor allosteric modulators. Molecular Psychiatry, 2020, 25, 2786-2799.	7.9	28
13	Anterior Cingulate Cortex Signals Attention in a Social Paradigm that Manipulates Reward and Shock. Current Biology, 2020, 30, 3724-3735.e2.	3.9	30
14	Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nature Neuroscience, 2019, 22, 1975-1985.	14.8	93
15	Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons. Cell Reports, 2019, 26, 1128-1142.e7.	6.4	116
16	Reduced nucleus accumbens enkephalins underlie vulnerability to social defeat stress. Neuropsychopharmacology, 2019, 44, 1876-1885.	5.4	34
17	Accumbal Dopamine Release Tracks the Expectation of Dopamine Neuron-Mediated Reinforcement. Cell Reports, 2019, 27, 481-490.e3.	6.4	27
18	Activation of the Rostral Intralaminar Thalamus Drives Reinforcement through Striatal Dopamine Release, Cell Reports, 2019, 26, 1389-1398.e3.	6.4	42

#	Article	IF	CITATIONS
19	Motivational Impairment is Accompanied by Corticoaccumbal Dysfunction in the BACHD-Tg5 Rat Model of Huntington's Disease. Cerebral Cortex, 2019, 29, 4763-4774.	2.9	3
20	Contributions of nucleus accumbens dopamine to cognitive flexibility. European Journal of Neuroscience, 2019, 50, 2023-2035.	2.6	32
21	Phasic Dopamine Signals in the Nucleus Accumbens that Cause Active Avoidance Require Endocannabinoid Mobilization in the Midbrain. Current Biology, 2018, 28, 1392-1404.e5.	3.9	64
22	An Interaction between Serotonin Receptor Signaling and Dopamine Enhances Goal-Directed Vigor and Persistence in Mice. Journal of Neuroscience, 2018, 38, 2149-2162.	3.6	32
23	Endocannabinoid Regulation of Reward and Reinforcement through Interaction with Dopamine and Endogenous Opioid Signaling. Neuropsychopharmacology, 2018, 43, 103-115.	5.4	104
24	T227. THE METABOTROPIC GLUTAMATE RECEPTOR SUBTYPE 1 REGULATES STRIATAL DOPAMINE RELEASE VIA AN ENDOCANNABINOID-DEPENDENT MECHANISM: IMPLICATIONS FOR THE TREATMENT OF SCHIZOPHRENIA. Schizophrenia Bulletin, 2018, 44, S204-S205.	4.3	1
25	Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington's disease. Neuropsychopharmacology, 2018, 43, 2056-2063.	5.4	25
26	Cannabinoid receptor-1 signaling contributions to sign-tracking and conditioned reinforcement in rats. Psychopharmacology, 2018, 235, 3031-3043.	3.1	19
27	Rat behavior and dopamine release are modulated by conspecific distress. ELife, 2018, 7, .	6.0	15
28	Reduced levels of <i><scp>C</scp>acna1c</i> attenuate mesolimbic dopamine system function. Genes, Brain and Behavior, 2017, 16, 495-505.	2.2	28
29	The endocannabinoid system as a target for novel anxiolytic drugs. Neuroscience and Biobehavioral Reviews, 2017, 76, 56-66.	6.1	182
30	Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology, 2017, 124, 52-61.	4.1	133
31	Endocannabinoid Actions on Cortical Terminals Orchestrate Local Modulation of Dopamine Release in the Nucleus Accumbens. Neuron, 2017, 96, 1112-1126.e5.	8.1	90
32	A new dawn in cannabinoid neurobiology: The road from molecules to therapeutic discoveries. Neuropharmacology, 2017, 124, 1-2.	4.1	4
33	Parameter-free automated extraction of neuronal signals from calcium imaging data. , 2017, , .		5
34	Ensembles in medial and lateral orbitofrontal cortex construct cognitive maps emphasizing different features of the behavioral landscape Behavioral Neuroscience, 2017, 131, 201-212.	1.2	32
35	(Invited) Exploring the Therapeutic Potential of the Endocannabinoid System in Huntington's Disease. ECS Meeting Abstracts, 2017, , .	0.0	0
36	Compromised Dopaminergic Encoding of Reward Accompanying Suppressed Willingness to Overcome High Effort Costs Is a Prominent Prodromal Characteristic of the Q175 Mouse Model of Huntington's Disease. Journal of Neuroscience, 2016, 36, 4993-5002.	3.6	29

#	Article	IF	CITATIONS
37	Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens. Journal of Neurochemistry, 2016, 139, 576-585.	3.9	20
38	Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions. Journal of Neuroscience, 2016, 36, 10230-10238.	3.6	52
39	Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 159-170.	2.5	89
40	Medial Orbitofrontal Neurons Preferentially Signal Cues Predicting Changes in Reward during Unblocking. Journal of Neuroscience, 2016, 36, 8416-8424.	3.6	28
41	Endocannabinoid Regulation of Cocaine Reinforcement: an Upper or Downer?. Neuropsychopharmacology, 2016, 41, 2189-2191.	5.4	1
42	Subsecond Regulation of Synaptically Released Dopamine by COMT in the Olfactory Bulb. Journal of Neuroscience, 2016, 36, 7779-7785.	3.6	23
43	Amphetamine elevates nucleus accumbens dopamine via an action potentialâ€dependent mechanism that is modulated by endocannabinoids. European Journal of Neuroscience, 2016, 43, 1661-1673.	2.6	41
44	Beyond the CB1 Receptor: Is Cannabidiol the Answer for Disorders of Motivation?. Annual Review of Neuroscience, 2016, 39, 1-17.	10.7	53
45	Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish. ENeuro, 2016, 3, ENEURO.0115-16.2016.	1.9	10
46	To Act or Not to Act: Endocannabinoid/Dopamine Interactions in Decision-Making. Frontiers in Behavioral Neuroscience, 2015, 9, 336.	2.0	13
47	Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nature Communications, 2015, 6, 7062.	12.8	356
48	Dopamine sensing upon amphetamine administration. , 2015, , .		0
49	SWEET LEAF: NEUROCHEMICAL ADVANCES REVEAL HOW CANNABINOIDS AFFECT BRAIN DOPAMINE CONCENTRATIONS. , 2015, , 251-267.		1
50	Endocannabinoid-Dopamine Interactions Shape Ethologically Relevant Behavior through Computation of Conditioned Stimuli. , 2015, , 183-204.		1
51	Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area. Cell Reports, 2015, 12, 1997-2008.	6.4	77
52	A Role for Phasic Dopamine Release within the Nucleus Accumbens in Encoding Aversion: A Review of the Neurochemical Literature. ACS Chemical Neuroscience, 2015, 6, 16-26.	3.5	104
53	Cannabinoid modulation of drug reward and the implications of marijuana legalization. Brain Research, 2015, 1628, 233-243.	2.2	69
54	Lateral orbitofrontal neurons acquire responses to upshifted, downshifted, or blocked cues during unblocking. ELife, 2015, 4, e11299.	6.0	39

#	Article	IF	CITATIONS
55	Real-Time Dopamine Measurement in Awake Monkeys. PLoS ONE, 2014, 9, e98692.	2.5	40

56 Pick your poison: not all opioids are created equal in the eyes of dopamine (Commentary on Vander) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

57	Endocannabinoid-Dependent Modulation of Phasic Dopamine Signaling Encodes External and Internal Reward-Predictive Cues. Frontiers in Psychiatry, 2014, 5, 118.	2.6	17
58	Tales from the dark side: Do neuromodulators of drug withdrawal require changes in endocannabinoid tone?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 52, 17-23.	4.8	8
59	Cannabinoid Receptor Activation Shifts Temporally Engendered Patterns of Dopamine Release. Neuropsychopharmacology, 2014, 39, 1441-1452.	5.4	28
60	Observation of Reward Delivery to a Conspecific Modulates Dopamine Release in Ventral Striatum. Current Biology, 2014, 24, 2564-2568.	3.9	40
61	Endocannabinoids Promote Cocaine-Induced Impulsivity and Its Rapid Dopaminergic Correlates. Biological Psychiatry, 2014, 75, 487-498.	1.3	41
62	Local control of striatal dopamine release. Frontiers in Behavioral Neuroscience, 2014, 8, 188.	2.0	111
63	Using dopamine research to generate rational cannabinoid drug policy. Drug Testing and Analysis, 2013, 5, 22-26.	2.6	12
64	Conditioned Contribution of Peripheral Cocaine Actions to Cocaine Reward and Cocaine-Seeking. Neuropsychopharmacology, 2013, 38, 1763-1769.	5.4	20
65	ΔFosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli. Journal of Neuroscience, 2013, 33, 18381-18395.	3.6	211
66	Olanzapine treatment of adolescent rats alters adult reward behaviour and nucleus accumbens function. International Journal of Neuropsychopharmacology, 2013, 16, 1599-1609.	2.1	30
67	On the role of subsecond dopamine release in conditioned avoidance. Frontiers in Neuroscience, 2013, 7, 96.	2.8	30
68	Optogenetic inhibition of D1R containing nucleus accumbens neurons alters cocaine-mediated regulation of Tiam1. Frontiers in Molecular Neuroscience, 2013, 6, 13.	2.9	69
69	A Brain on Cannabinoids: The Role of Dopamine Release in Reward Seeking. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a012229-a012229.	6.2	114
70	Effect of CB1 Receptor Blockade on Food-Reinforced Responding and Associated Nucleus Accumbens Neuronal Activity in Rats. Journal of Neuroscience, 2012, 32, 11467-11477.	3.6	32
71	Cannabinoids and value-based decision making: Implications for neurodegenerative disorders. Basal Ganglia, 2012, 2, 131-138.	0.3	9
72	Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing. Cell Reports, 2012, 2, 33-41.	6.4	424

#	Article	IF	CITATIONS
73	Endocannabinoids Shape Accumbal Encoding of Cue-Motivated Behavior via CB1 Receptor Activation in the Ventral Tegmentum. Neuron, 2012, 73, 360-373.	8.1	139
74	Methamphetamine-induced dopamine terminal deficits in the nucleus accumbens are exacerbated by reward-associated cues and attenuated by CB1 receptor antagonism. Neuropharmacology, 2012, 62, 2192-2201.	4.1	14
75	Cannabinoid receptors mediate methamphetamine induction of high frequency gamma oscillations in the nucleus accumbens. Neuropharmacology, 2012, 63, 565-574.	4.1	26
76	Subsecond Dopamine Release in the Nucleus Accumbens Predicts Conditioned Punishment and Its Successful Avoidance. Journal of Neuroscience, 2012, 32, 14804-14808.	3.6	208
77	Paradoxical effects of the endocannabinoid uptake inhibitor VDM11 on accumbal neural encoding of reward predictive cues. Synapse, 2012, 66, 984-988.	1.2	9
78	Role for mTOR Signaling and Neuronal Activity in Morphine-Induced Adaptations in Ventral Tegmental Area Dopamine Neurons. Neuron, 2011, 72, 977-990.	8.1	122
79	Contrasting Effects of Lithium Chloride and CB1 Receptor Blockade on Enduring Changes in the Valuation of Reward. Frontiers in Behavioral Neuroscience, 2011, 5, 53.	2.0	4
80	Extinction learning of rewards in the rat: is there a role for CB1 receptors?. Psychopharmacology, 2011, 217, 189-197.	3.1	9
81	Cannabinoid Receptor Blockade Reduces the Opportunity Cost at Which Rats Maintain Operant Performance for Rewarding Brain Stimulation. Journal of Neuroscience, 2011, 31, 5426-5435.	3.6	30
82	Neural Encoding of Psychomotor Activation in the Nucleus Accumbens Core, But Not the Shell, Requires Cannabinoid Receptor Signaling. Journal of Neuroscience, 2010, 30, 5102-5107.	3.6	29
83	Cannabinoid receptor activation reverses kainate-induced synchronized population burst firing in rat hippocampus. Frontiers in Integrative Neuroscience, 2009, 3, 13.	2.1	12
84	CENTRAL CANNABINOID 1 RECEPTOR ANTAGONIST ADMINISTRATION PREVENTS ENDOTOXIC HYPOTENSION AFFECTING NOREPINEPHRINE RELEASE IN THE PREOPTIC ANTERIOR HYPOTHALAMIC AREA. Shock, 2009, 32, 614-620.	2.1	29
85	Neural encoding of cocaineâ€seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. European Journal of Neuroscience, 2009, 30, 1117-1127.	2.6	111
86	Dopamine–Endocannabinoid Interactions in Parkinson's Disease. , 2009, , 1-21.		2
87	Central rimonabant administration prevents endotoxic hypotension by inhibiting norepinephrine release in the preoptic anterior hypothalamic area. FASEB Journal, 2009, 23, 938.1.	0.5	Ο
88	Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11957-11962.	7.1	119
89	Phasic Dopamine Release Evoked by Abused Substances Requires Cannabinoid Receptor Activation. Journal of Neuroscience, 2007, 27, 791-795.	3.6	334
90	Coordinated Accumbal Dopamine Release and Neural Activity Drive Goal-Directed Behavior. Neuron, 2007, 54, 237-244.	8.1	184

#	Article	IF	CITATIONS
91	Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens. European Journal of Neuroscience, 2007, 26, 2046-2054.	2.6	155
92	Cannabinoid modulation of electrically evoked pH and oxygen transients in the nucleus accumbens of awake rats. Journal of Neurochemistry, 2006, 97, 1145-1154.	3.9	24
93	Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10023-10028.	7.1	427
94	Simultaneous dopamine and single-unit recordings reveal accumbens GABAergic responses: Implications for intracranial self-stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19150-19155.	7.1	124
95	Reward, memory and substance abuse: functional neuronal circuits in the nucleus accumbens. Neuroscience and Biobehavioral Reviews, 2004, 27, 703-711.	6.1	60
96	Cannabinoids Enhance Subsecond Dopamine Release in the Nucleus Accumbens of Awake Rats. Journal of Neuroscience, 2004, 24, 4393-4400.	3.6	303