Raymond J Deshaies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4154019/publications.pdf

Version: 2024-02-01

156 papers 31,253 citations

4383 86 h-index 156 g-index

167 all docs

167 docs citations

times ranked

167

24022 citing authors

#	Article	IF	CITATIONS
1	RING Domain E3 Ubiquitin Ligases. Annual Review of Biochemistry, 2009, 78, 399-434.	5.0	2,180
2	Function and regulation of cullin–RING ubiquitin ligases. Nature Reviews Molecular Cell Biology, 2005, 6, 9-20.	16.1	1,890
3	A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, 1988, 332, 800-805.	13.7	1,567
4	Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8554-8559.	3.3	1,482
5	How Proteolysis Drives the Cell Cycle. Science, 1996, 274, 1652-1659.	6.0	1,249
6	Role of Rpn11 Metalloprotease in Deubiquitination and Degradation by the 26S Proteasome. Science, 2002, 298, 611-615.	6.0	919
7	A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p. Cell, 1997, 91, 221-230.	13.5	789
8	Exit from Mitosis Is Triggered by Tem1-Dependent Release of the Protein Phosphatase Cdc14 from Nucleolar RENT Complex. Cell, 1999, 97, 233-244.	13.5	684
9	Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1. Science, 2002, 298, 608-611.	6.0	666
10	Promotion of NEDD8-CUL1 Conjugate Cleavage by COP9 Signalosome. Science, 2001, 292, 1382-1385.	6.0	641
11	Proteasomal Proteomics: Identification of Nucleotide-sensitive Proteasome-interacting Proteins by Mass Spectrometric Analysis of Affinity-purified Proteasomes. Molecular Biology of the Cell, 2000, 11, 3425-3439.	0.9	518
12	Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552, 194-199.	13.7	516
13	Phosphorylation of Sic1p by G1 Cdk Required for Its Degradation and Entry into S Phase. Science, 1997, 278, 455-460.	6.0	454
14	Interactions of the COP9 Signalosome with the E3 Ubiquitin Ligase SCFTIR1 in Mediating Auxin Response. Science, 2001, 292, 1379-1382.	6.0	451
15	Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells. Molecular Cell, 2010, 38, 17-28.	4.5	426
16	A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum Journal of Cell Biology, 1987, 105, 633-645.	2.3	410
17	Multiubiquitin Chain Receptors Define a Layer of Substrate Selectivity in the Ubiquitin-Proteasome System. Cell, 2004, 118, 99-110.	13.5	410
18	Chemical Genetic Control of Protein Levels:Â Selective in Vivo Targeted Degradation. Journal of the American Chemical Society, 2004, 126, 3748-3754.	6.6	384

#	Article	IF	CITATIONS
19	COP9 Signalosome. Cell, 2003, 114, 663-671.	13.5	375
20	Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes and Development, 1999, 13, 1614-1626.	2.7	372
21	Net1, a Sir2-Associated Nucleolar Protein Required for rDNA Silencing and Nucleolar Integrity. Cell, 1999, 97, 245-256.	13.5	366
22	Human De-Etiolated-1 Regulates c-Jun by Assembling a CUL4A Ubiquitin Ligase. Science, 2004, 303, 1371-1374.	6.0	349
23	Assembly of yeast Sec proteins involved in translocation into the endoplasmic reticulum into a membrane-bound multisubunit complex. Nature, 1991, 349, 806-808.	13.7	343
24	Multimodal Activation of the Ubiquitin Ligase SCF by Nedd8 Conjugation. Molecular Cell, 2008, 32, 21-31.	4.5	342
25	Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast Journal of Cell Biology, 1989, 109, 2641-2652.	2.3	341
26	$2.3~\tilde{A}$ resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science, 2016, 351, 871-875.	6.0	305
27	Development of Protacs to Target Cancer-promoting Proteins for Ubiquitination and Degradation. Molecular and Cellular Proteomics, 2003, 2, 1350-1358.	2.5	302
28	SEL-10 Is an Inhibitor of Notch Signaling That Targets Notch for Ubiquitin-Mediated Protein Degradation. Molecular and Cellular Biology, 2001, 21, 7403-7415.	1.1	299
29	Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4834-4839.	3.3	281
30	Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biology, 2014, 12, 94.	1.7	281
31	UBXD7 Binds Multiple Ubiquitin Ligases and Implicates p97 in HIF1α Turnover. Cell, 2008, 134, 804-816.	13.5	277
32	Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes and Development, 2001, 15, 1078-1092.	2.7	272
33	Mechanism of Lysine 48-Linked Ubiquitin-Chain Synthesis by the Cullin-RING Ubiquitin-Ligase Complex SCF-Cdc34. Cell, 2005, 123, 1107-1120.	13.5	249
34	Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nature Cell Biology, 2001, 3, 384-391.	4.6	242
35	Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins. Cell, 2013, 153, 206-215.	13.5	228
36	Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1548-1553.	3.3	210

#	Article	IF	Citations
37	Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. ELife, 2013, 2, e00308.	2.8	203
38	JAMM: A Metalloprotease-Like Zinc Site in the Proteasome and Signalosome. PLoS Biology, 2003, 2, e2.	2.6	194
39	SEC11 is required for signal peptide processing and yeast cell growth Journal of Cell Biology, 1988, 106, 1035-1042.	2.3	192
40	Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes and Development, 1997, 11, 3046-3060.	2.7	191
41	Detection of sequential polyubiquitylation on a millisecond timescale. Nature, 2009, 462, 615-619.	13.7	189
42	Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. Genes and Development, 1999, 13, 2242-2257.	2.7	185
43	SEC62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum Journal of Cell Biology, 1989, 109, 2653-2664.	2.3	184
44	Ubistatins Inhibit Proteasome-Dependent Degradation by Binding the Ubiquitin Chain. Science, 2004, 306, 117-120.	6.0	183
45	Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7325-7330.	3.3	182
46	A Multidimensional Electrospray MS-Based Approach to Phosphopeptide Mapping. Analytical Chemistry, 2001, 73, 393-404.	3.2	178
47	Rapid E2-E3 Assembly and Disassembly Enable Processive Ubiquitylation of Cullin-RING Ubiquitin Ligase Substrates. Cell, 2009, 139, 957-968.	13.5	178
48	Structural Organization of the 19S Proteasome Lid: Insights from MS of Intact Complexes. PLoS Biology, 2006, 4, e267.	2.6	176
49	Cdc48/p97 Mediates UV-Dependent Turnover of RNA Pol II. Molecular Cell, 2011, 41, 82-92.	4.5	176
50	p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. ELife, 2014, 3, e01856.	2.8	176
51	A putative stimulatory role for activator turnover in gene expression. Nature, 2005, 438, 113-116.	13.7	172
52	Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nature Cell Biology, 2003, 5, 845-850.	4.6	166
53	Multispecific drugs herald a new era of biopharmaceutical innovation. Nature, 2020, 580, 329-338.	13.7	166
54	Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27, 7201-7211.	2.6	163

#	Article	IF	CITATIONS
55	Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress. Nature Cell Biology, 2014, 16, 1227-1237.	4.6	161
56	Phosphorylation by Cyclin B-Cdk Underlies Release of Mitotic Exit Activator Cdc14 from the Nucleolus. Science, 2004, 305, 516-519.	6.0	159
57	Skp1p and the F-Box Protein Rcy1p Form a Non-SCF Complex Involved in Recycling of the SNARE Snc1p in Yeast. Molecular and Cellular Biology, 2001, 21, 3105-3117.	1.1	157
58	Context of Multiubiquitin Chain Attachment Influences the Rate of Sic1 Degradation. Molecular Cell, 2003, 11, 1435-1444.	4.5	147
59	A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. ELife, 2016, 5, .	2.8	147
60	Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Molecular Cell, 2020, 77, 446-460.	4.5	140
61	Cdc37 is required for association of the protein kinase Cdc28 with G1 and mitotic cyclins Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4651-4655.	3.3	136
62	Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4380-E4388.	3.3	136
63	Multisite Phosphorylation and the Countdown to S Phase. Cell, 2001, 107, 819-822.	13.5	132
64	Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nature Biotechnology, 2010, 28, 738-742.	9.4	132
65	Prime time for PROTACs. Nature Chemical Biology, 2015, 11, 634-635.	3.9	132
66	Glutamine Triggers Acetylation-Dependent Degradation of Glutamine Synthetase via the Thalidomide Receptor Cereblon. Molecular Cell, 2016, 61, 809-820.	4.5	132
67	Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. , 2006, 7, 1.		131
68	Applicability of Tandem Affinity Purification MudPIT to Pathway Proteomics in Yeast. Molecular and Cellular Proteomics, 2004, 3, 226-237.	2.5	130
69	A Proteasome Howdunit. Cell, 2000, 101, 341-344.	13.5	129
70	Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7451-7456.	3.3	125
71	The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis. Journal of Cell Science, 2001, 114, 1379-86.	1.2	125
72	Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature, 2018, 557, 446-451.	13.7	122

#	Article	IF	CITATIONS
73	The role of stress proteins in membrane biogenesis. Trends in Biochemical Sciences, 1988, 13, 384-388.	3.7	119
74	Structure–Activity Relationship Study Reveals ML240 and ML241 as Potent and Selective Inhibitors of p97 ATPase. ChemMedChem, 2013, 8, 297-312.	1.6	119
75	Composition and Regulation of the Cellular Repertoire of SCF Ubiquitin Ligases. Cell, 2017, 171, 1326-1339.e14.	13.5	118
76	Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nature Chemical Biology, 2017, 13, 486-493.	3.9	117
77	Net1 Stimulates RNA Polymerase I Transcription and Regulates Nucleolar Structure Independently of Controlling Mitotic Exit. Molecular Cell, 2001, 8, 45-55.	4.5	116
78	Deconjugation of Nedd8 from Cul1 Is Directly Regulated by Skp1-F-box and Substrate, and the COP9 Signalosome Inhibits Deneddylated SCF by a Noncatalytic Mechanism. Journal of Biological Chemistry, 2012, 287, 29679-29689.	1.6	110
79	Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO Journal, 2000, 19, 6085-6097.	3.5	108
80	Essential Role for Ubiquitin-Ubiquitin-Conjugating Enzyme Interaction in Ubiquitin Discharge from Cdc34 to Substrate. Molecular Cell, 2011, 42, 75-83.	4. 5	108
81	Ribosomal proteins produced in excess are degraded by the ubiquitin–proteasome system. Molecular Biology of the Cell, 2016, 27, 2642-2652.	0.9	105
82	Specific Inhibition of p97/VCP ATPase and Kinetic Analysis Demonstrate Interaction between D1 and D2 ATPase Domains. Journal of Molecular Biology, 2014, 426, 2886-2899.	2.0	103
83	The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochemistry, 2001, 2, 7.	4.4	101
84	Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Current Opinion in Genetics and Development, 1997, 7, 7-16.	1.5	98
85	Dbf2–Mob1 drives relocalization of protein phosphatase Cdc14 to the cytoplasm during exit from mitosis. Journal of Cell Biology, 2009, 184, 527-539.	2.3	96
86	Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nature Chemical Biology, 2017, 13, 709-714.	3.9	95
87	Selective Degradation of Ubiquitinated Sic1 by Purified 26S Proteasome Yields Active S Phase Cyclin-Cdk. Molecular Cell, 2001, 8, 439-448.	4.5	93
88	Quantitative Profiling of Ubiquitylated Proteins Reveals Proteasome Substrates and the Substrate Repertoire Influenced by the Rpn10 Receptor Pathway. Molecular and Cellular Proteomics, 2007, 6, 1885-1895.	2.5	90
89	Analysis of Polyubiquitin Conjugates Reveals That the Rpn10 Substrate Receptor Contributes to the Turnover of Multiple Proteasome Targets. Molecular and Cellular Proteomics, 2005, 4, 741-751.	2.5	89
90	Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochemistry, 2005, 6, 22.	4.4	89

#	Article	IF	CITATIONS
91	Exercising self-restraint: Discouraging illicit acts of S and M in eukaryotes. Cell, 1993, 74, 223-226.	13.5	88
92	Control of Cullin-Ring Ubiquitin Ligase Activity by Nedd8. Sub-Cellular Biochemistry, 2010, 54, 41-56.	1.0	85
93	Cand1-Mediated Adaptive Exchange Mechanism Enables Variation in F-Box Protein Expression. Molecular Cell, 2018, 69, 773-786.e6.	4. 5	84
94	Make it or break it: the role of ubiquitin-dependent proteolysis in cellular regulation. Trends in Cell Biology, 1995, 5, 428-434.	3.6	82
95	Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. ELife, 2016, 5, .	2.8	82
96	Chfr is linked to tumour metastasis through the downregulation of HDAC1. Nature Cell Biology, 2009, 11, 295-302.	4.6	76
97	NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway. Nature Structural and Molecular Biology, 2012, 19, 511-516.	3.6	74
98	p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3565-3571.	3.3	68
99	Mass Spectrometry-based Methods for Phosphorylation Site Mapping of Hyperphosphorylated Proteins Applied to Net1, a Regulator of Exit from Mitosis in Yeast. Molecular and Cellular Proteomics, 2002, 1, 186-196.	2.5	67
100	Characterization of the Net1 Cell Cycle-dependent Regulator of the Cdc14 Phosphatase from Budding Yeast. Journal of Biological Chemistry, 2001, 276, 21924-21931.	1.6	65
101	Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nature Communications, 2018, 9, 1738.	5.8	65
102	Cks1 Is Required for G 1 Cyclin–Cyclin-Dependent Kinase Activity in Budding Yeast. Molecular and Cellular Biology, 2000, 20, 5858-5864.	1.1	64
103	Cdc5 influences phosphorylation of Net1 and disassembly of the RENT complex. BMC Molecular Biology, 2002, 3, 3.	3.0	64
104	The self-destructive personality of a cell cycle in transition. Current Opinion in Cell Biology, 1995, 7, 781-789.	2.6	62
105	Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. BMC Biology, 2011, 9, 33.	1.7	62
106	Discovery of an Inhibitor of the Proteasome Subunit Rpn11. Journal of Medicinal Chemistry, 2017, 60, 1343-1361.	2.9	61
107	PIKES Analysis Reveals Response to Degraders and Key Regulatory Mechanisms of the CRL4 Network. Molecular Cell, 2020, 77, 1092-1106.e9.	4.5	56
108	Quantitative Cell-based Protein Degradation Assays to Identify and Classify Drugs That Target the Ubiquitin-Proteasome System. Journal of Biological Chemistry, 2011, 286, 16546-16554.	1.6	55

#	Article	IF	CITATIONS
109	The Steady-State Repertoire of Human SCF Ubiquitin Ligase Complexes Does Not Require Ongoing Nedd8 Conjugation. Molecular and Cellular Proteomics, 2011, 10, M110.006460.	2.5	54
110	Combined chemical and genetic approach to inhibit proteolysis by the proteasome. Yeast, 2010, 27, 965-974.	0.8	51
111	Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing. Structure, 2019, 27, 1820-1829.e4.	1.6	51
112	A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome. Molecular Biology of the Cell, 2007, 18, 1953-1963.	0.9	50
113	Development of p97 AAA ATPase inhibitors. Autophagy, 2011, 7, 1091-1092.	4.3	48
114	Mutations in the Hydrophobic Core of Ubiquitin Differentially Affect Its Recognition by Receptor Proteins. Journal of Molecular Biology, 2008, 375, 979-996.	2.0	43
115	Assembly and Regulation of CRL Ubiquitin Ligases. Advances in Experimental Medicine and Biology, 2020, 1217, 33-46.	0.8	43
116	Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget, 2015, 6, 14796-14813.	0.8	42
117	Valosin-containing protein (VCP)–Adaptor Interactions are Exceptionally Dynamic and Subject to Differential Modulation by a VCP Inhibitor. Molecular and Cellular Proteomics, 2016, 15, 2970-2986.	2.5	42
118	Characterization of a Dominant Negative Mutant of the Cell Cycle Ubiquitin-conjugating Enzyme Cdc34. Journal of Biological Chemistry, 1995, 270, 26209-26215.	1.6	41
119	Designer Reagents for Mass Spectrometry-Based Proteomics: Clickable Cross-Linkers for Elucidation of Protein Structures and Interactions. Analytical Chemistry, 2012, 84, 2662-2669.	3.2	41
120	The TFIIH Subunit Tfb3 Regulates Cullin Neddylation. Molecular Cell, 2011, 43, 488-495.	4.5	39
121	Genetic dissection of the early stages of protein secretion in yeast. Trends in Genetics, 1989, 5, 87-93.	2.9	37
122	Charting the Protein Complexome in Yeast by Mass Spectrometry. Molecular and Cellular Proteomics, 2002, 1, 3-10.	2.5	36
123	Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae. BMC Genetics, 2002, 3, 4.	2.7	36
124	In Vitro Reconstitution of SCF Substrate Ubiquitination with Purified Proteins. Methods in Enzymology, 2005, 398, 143-158.	0.4	33
125	Nrf1 can be processed and activated in a proteasome-independent manner. Current Biology, 2016, 26, R834-R835.	1.8	32
126	The Acidic Tail of the Cdc34 Ubiquitin-conjugating Enzyme Functions in Both Binding to and Catalysis with Ubiquitin Ligase SCFCdc4. Journal of Biological Chemistry, 2009, 284, 36012-36023.	1.6	31

#	Article	IF	Citations
127	Protein Interaction Profiling of the p97 Adaptor UBXD1 Points to a Role for the Complex in Modulating ERGIC-53 Trafficking. Molecular and Cellular Proteomics, 2012, 11, M111.016444.	2.5	31
128	Click Chemistry Facilitates Formation of Reporter Ions and Simplified Synthesis of Amine-Reactive Multiplexed Isobaric Tags for Protein Quantification. Journal of the American Chemical Society, 2012, 134, 2672-2680.	6.6	30
129	Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway. ACS Medicinal Chemistry Letters, 2016, 7, 182-187.	1.3	30
130	Epidithiodiketopiperazines Inhibit Protein Degradation by Targeting Proteasome Deubiquitinase Rpn11. Cell Chemical Biology, 2018, 25, 1350-1358.e9.	2.5	30
131	Mapping phosphorylation sites in proteins by mass spectrometry. Methods in Enzymology, 2002, 351, 279-296.	0.4	29
132	Gal4 turnover and transcription activation. Nature, 2009, 461, E7-E7.	13.7	27
133	Perturbations to the Ubiquitin Conjugate Proteome in Yeast Î"ubx Mutants Identify Ubx2 as a Regulator of Membrane Lipid Composition. Molecular and Cellular Proteomics, 2013, 12, 2791-2803.	2.5	27
134	Activation of p107 by Fibroblast Growth Factor, Which Is Essential for Chondrocyte Cell Cycle Exit, Is Mediated by the Protein Phosphatase $2A/B55\hat{l}\pm Holoenzyme$. Molecular and Cellular Biology, 2013, 33, 3330-3342.	1.1	26
135	Degradation of the Deubiquitinating Enzyme USP33 Is Mediated by p97 and the Ubiquitin Ligase HERC2. Journal of Biological Chemistry, 2014, 289, 19789-19798.	1.6	26
136	The pseudophosphatase <scp>STYX</scp> targets the Fâ€box of <scp>FBXW</scp> 7 and inhibits <scp>SCF</scp> ^{FBXW7} function. EMBO Journal, 2017, 36, 260-273.	3.5	26
137	Twoâ€Step Affinity Purification of Multiubiquitylated Proteins from Saccharomyces cerevisiae. Methods in Enzymology, 2005, 399, 385-392.	0.4	24
138	Components of the ubiquitin-proteasome pathway compete for surfaces on Rad23 family proteins. BMC Biochemistry, 2008, 9, 4.	4.4	24
139	F-box Protein FBXL16 Binds PP2A-B55 \hat{l}_{\pm} and Regulates Differentiation of Embryonic Stem Cells along the FLK1+ Lineage. Molecular and Cellular Proteomics, 2014, 13, 780-791.	2.5	22
140	Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19796-19801.	3.3	21
141	Evaluation of a Diffusion-Driven Mechanism for Substrate Ubiquitination by the SCF-Cdc34 Ubiquitin Ligase Complex. Molecular Cell, 2006, 24, 523-534.	4.5	20
142	Cell Cycle Control by Ubiquitin-Dependent Proteolysis. , 1998, , 345-387.		19
143	Permeability of Chloroplast Envelopes to Mg2+. Plant Physiology, 1984, 74, 956-961.	2.3	17
144	Ubiquitin-dependent proteasomal degradation of AMPK gamma subunit by Cereblon inhibits AMPK activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118729.	1.9	16

#	Article	IF	CITATIONS
145	Structural Basis for the Inhibitory Effects of Ubistatins in the Ubiquitin-Proteasome Pathway. Structure, 2017, 25, 1839-1855.e11.	1.6	15
146	A covalent p97/VCP ATPase inhibitor can overcome resistance to CB-5083 and NMS-873 in colorectal cancer cells. European Journal of Medicinal Chemistry, 2021, 213, 113148.	2.6	15
147	Fresh target for cancer therapy. Nature, 2009, 458, 709-710.	13.7	11
148	COP1 patrols the night beat. Nature Cell Biology, 2000, 2, E102-E104.	4.6	10
149	In-depth proteomic analysis of proteasome inhibitors bortezomib, carfilzomib and MG132 reveals that mortality factor 4-like 1 (MORF4L1) protein ubiquitylation is negatively impacted. Journal of Proteomics, 2021, 241, 104197.	1.2	10
150	Corralling a protein-degradation regulator. Nature, 2014, 512, 145-146.	13.7	9
151	Cell-free ubiquitination of cell cycle regulators in budding yeast extracts. Methods in Enzymology, 1997, 283, 365-376.	0.4	8
152	Redundant Degrons Ensure the Rapid Destruction of Sic1 at the G1/S Transition of the Budding Yeast Cell Cycle. Cell Cycle, 2003, 2, 409-410.	1.3	6
153	Transfer of ubiquitin protein caught in the act. Nature, 2020, 578, 372-373.	13.7	5
154	Targeted protein degradation: from small molecules to complex organellesâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.	1.8	5
155	Redundant degrons ensure the rapid destruction of Sic1 at the G1/S transition of the budding yeast cell cycle. Cell Cycle, 2003, 2, 410-1.	1.3	4
156	Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Current Opinion in Genetics and Development, 1997, 7, 424.	1.5	0