Anders Omsland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/415393/publications.pdf Version: 2024-02-01

ANDERS OMSLAND

#	Article	IF	CITATIONS
1	Host cell-free growth of the Q fever bacterium <i>Coxiella burnetii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4430-4434.	7.1	363
2	Dot/Icm Type IVB Secretion System Requirements for Coxiella burnetii Growth in Human Macrophages. MBio, 2011, 2, e00175-11.	4.1	214
3	Comparative Genomics Reveal Extensive Transposon-Mediated Genomic Plasticity and Diversity among Potential Effector Proteins within the Genus <i>Coxiella</i> . Infection and Immunity, 2009, 77, 642-656.	2.2	197
4	Isolation from Animal Tissue and Genetic Transformation of Coxiella burnetii Are Facilitated by an Improved Axenic Growth Medium. Applied and Environmental Microbiology, 2011, 77, 3720-3725.	3.1	191
5	Developmental stage-specific metabolic and transcriptional activity of <i>Chlamydia trachomatis</i> in an axenic medium. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19781-19785.	7.1	137
6	Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiology Reviews, 2014, 38, 779-801.	8.6	112
7	Sustained Axenic Metabolic Activity by the Obligate Intracellular Bacterium <i>Coxiella burnetii</i> . Journal of Bacteriology, 2008, 190, 3203-3212.	2.2	71
8	Life on the Outside: The Rescue ofCoxiella burnetiifrom Its Host Cell. Annual Review of Microbiology, 2011, 65, 111-128.	7.3	52
9	Lipid A Has Significance for Optimal Growth of Coxiella burnetii in Macrophage-Like THP-1 Cells and to a Lesser Extent in Axenic Media and Non-phagocytic Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 192.	3.9	51
10	Physicochemical and Nutritional Requirements for Axenic Replication Suggest Physiological Basis for Coxiella burnetii Niche Restriction. Frontiers in Cellular and Infection Microbiology, 2017, 7, 190.	3.9	42
11	Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. Journal of Bacteriology, 2018, 200, .	2.2	29
12	Use of Axenic Culture Tools to Study <i>Coxiella burnetii</i> . Current Protocols in Microbiology, 2018, 50, e52.	6.5	28
13	Single-Inclusion Kinetics of <i>Chlamydia trachomatis</i> Development. MSystems, 2020, 5, .	3.8	18
14	Selective Inhibition of Coxiella burnetii Replication by the Steroid Hormone Progesterone. Infection and Immunity, 2020, 88, .	2.2	9
15	Controlled replication of â€~ Candidatus Liberibacter asiaticus â€~ DNA in citrus leaf discs. Microbial Biotechnology, 2020, 13, 747-759.	4.2	7
16	Natural genetic variation in <i>Drosophila melanogaster</i> reveals genes associated with <i>Coxiella burnetii</i> infection. Genetics, 2021, 217, .	2.9	7
17	Metabolic Plasticity Aids Amphotropism of Coxiella burnetii. Infection and Immunity, 2021, 89, e0013521.	2.2	7
18	Critical Role for Molecular Iron in Coxiella burnetii Replication and Viability. MSphere, 2020, 5, .	2.9	7

ANDERS OMSLAND

#	Article	IF	CITATIONS
19	Bordetella bronchisepticaresponses to physiological reactive nitrogen and oxygen stresses. FEMS Microbiology Letters, 2008, 284, 92-101.	1.8	5
20	The sRNA Regulated Protein DdbA Is Involved in Development and Maintenance of the Chlamydia trachomatis EB Cell Form. Frontiers in Cellular and Infection Microbiology, 2021, 11, 692224.	3.9	5
21	Conditional impairment of <i>Coxiella burnetii</i> by glucose-6P dehydrogenase activity. Pathogens and Disease, 2021, 79, .	2.0	4
22	Expression and structure of the <i>Chlamydia trachomatis</i> DksA ortholog. Pathogens and Disease, 2022, 80, .	2.0	2