Shujahadeen B Aziz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4153885/publications.pdf

Version: 2024-02-01

38742 71685 7,001 142 50 76 citations h-index g-index papers 143 143 143 2648 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices, 2018, 3, 1-17.	3.1	397
2	Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. Journal of Materials Science: Materials in Electronics, 2015, 26, 5303-5309.	2.2	201
3	Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices. Journal of Electronic Materials, 2016, 45, 736-745.	2.2	184
4	Ionâ€transport study in nanocomposite solid polymer electrolytes based on chitosan: Electrical and dielectric analysis. Journal of Applied Polymer Science, 2015, 132, .	2.6	171
5	Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. Journal of Materials Science: Materials in Electronics, 2015, 26, 8022-8028.	2.2	145
6	Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte. Iranian Polymer Journal (English Edition), 2013, 22, 877-883.	2.4	137
7	Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide. Ionics, 2016, 22, 2157-2167.	2.4	135
8	Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review. Polymers, 2020, 12, 2627.	4.5	127
9	Fabrication of polymer blend composites based on [PVA-PVP] (1â^'x):(Ag 2 S) x (0.01 ≾ â‰�0.03) with small optical band gaps: Structural and optical properties. Materials Science in Semiconductor Processing, 2017, 71, 197-203.	4.0	126
10	Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte. Physica B: Condensed Matter, 2010, 405, 4429-4433.	2.7	121
11	Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: two methods for band gap study. Journal of Materials Science: Materials in Electronics, 2017, 28, 7473-7479.	2.2	115
12	Electrical and morphological analysis of chitosan:AgTf solid electrolyte. Materials Chemistry and Physics, 2014, 144, 280-286.	4.0	113
13	Structural and Optical Characteristics of PVA:C-Dot Composites: Tuning the Absorption of Ultra Violet (UV) Region. Nanomaterials, 2019, 9, 216.	4.1	108
14	Electrical Conduction Mechanism in Solid Polymer Electrolytes: New Concepts to Arrhenius Equation. Journal of Soft Matter, 2013, 2013, 1-8.	1.7	105
15	Effect of High Salt Concentration (HSC) on Structural, Morphological, and Electrical Characteristics of Chitosan Based Solid Polymer Electrolytes. Polymers, 2017, 9, 187.	4.5	104
16	A Promising Polymer Blend Electrolytes Based on Chitosan: Methyl Cellulose for EDLC Application with High Specific Capacitance and Energy Density. Molecules, 2019, 24, 2503.	3.8	101
17	Polymer Blending as a Novel Approach for Tuning the SPR Peaks of Silver Nanoparticles. Polymers, 2017, 9, 486.	4.5	98
18	From Insulating PMMA Polymer to Conjugated Double Bond Behavior: Green Chemistry as a Novel Approach to Fabricate Small Band Gap Polymers. Polymers, 2017, 9, 626.	4.5	97

#	Article	IF	CITATIONS
19	Role of Ion Dissociation on DC Conductivity and Silver Nanoparticle Formation in PVA:AgNt Based Polymer Electrolytes: Deep Insights to Ion Transport Mechanism. Polymers, 2017, 9, 338.	4.5	94
20	Morphological and Optical Characteristics of Chitosan(1â^'x):Cuox (4 ≤ ≤12) Based Polymer Nano-Composites: Optical Dielectric Loss as an Alternative Method for Tauc's Model. Nanomaterials, 2017, 7, 444.	4.1	93
21	Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.8	88
22	Study of electrical percolation phenomenon from the dielectric and electric modulus analysis. Bulletin of Materials Science, 2015, 38, 1597-1602.	1.7	85
23	In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. Journal of Materials Science: Materials in Electronics, 2016, 27, 4163-4171.	2.2	85
24	From Green Remediation to Polymer Hybrid Fabrication with Improved Optical Band Gaps. International Journal of Molecular Sciences, 2019, 20, 3910.	4.1	85
25	A Comprehensive Review on Optical Properties of Polymer Electrolytes and Composites. Materials, 2020, 13, 3675.	2.9	85
26	Effect of the dopant salt on the optical parameters of PVA:NaNO3 solid polymer electrolyte. Journal of Materials Science: Materials in Electronics, 2015, 26, 521-529.	2.2	84
27	Development of Polymer Blend Electrolyte Membranes Based on Chitosan: Dextran with High Ion Transport Properties for EDLC Application. International Journal of Molecular Sciences, 2019, 20, 3369.	4.1	84
28	The Study of the Degree of Crystallinity, Electrical Equivalent Circuit, and Dielectric Properties of Polyvinyl Alcohol (PVA)-Based Biopolymer Electrolytes. Polymers, 2020, 12, 2184.	4.5	83
29	Fabrication of Interconnected Plasmonic Spherical Silver Nanoparticles with Enhanced Localized Surface Plasmon Resonance (LSPR) Peaks Using Quince Leaf Extract Solution. Nanomaterials, 2019, 9, 1557.	4.1	81
30	Fabrication of energy storage EDLC device based on CS:PEO polymer blend electrolytes with high Li+ion transference number. Results in Physics, 2019, 15, 102584.	4.1	78
31	Synthesis of Polymer Nanocomposites Based on [Methyl Cellulose](1â^'x):(CuS)x (0.02 M ≤ ≤0.08 M) with Desired Optical Band Gaps. Polymers, 2017, 9, 194.	4.5	77
32	Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA:dextran:NH4I based polymer blend electrolytes. Journal of Materials Research and Technology, 2020, 9, 3734-3745.	5.8	76
33	Effect of PVA Blending on Structural and Ion Transport Properties of CS:AgNt-Based Polymer Electrolyte Membrane. Polymers, 2017, 9, 622.	4.5	72
34	The study of structural and optical properties of PVA:PbO2 based solid polymer nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 12112-12118.	2.2	71
35	Innovative method to avoid the reduction of silver ions to silver nanoparticles $f(m A) = 10.784$ Scripta, 2015, 90, 035808.	1314 rgBT 2.5	/Overlock 1 69
36	Occurrence of electrical percolation threshold and observation of phase transition in chitosan($1\hat{a}^2x$):AgI x (0.05 $\hat{A}\hat{a}\hat{w}\hat{A}\hat{a}\hat{a}\hat{w}\hat{A}\hat{a}\hat{a}\hat{w}\hat{A}\hat{a}\hat{a}\hat{a}\hat{a}\hat{a}\hat{a}\hat{a}\hat{a}\hat{a}a$	2.3	68

#	Article	IF	CITATIONS
37	Fabrication of high performance energy storage EDLC device from proton conducting methylcellulose: dextran polymer blend electrolytes. Journal of Materials Research and Technology, 2020, 9, 1137-1150.	5.8	68
38	A novel polymer composite with a small optical band gap: New approaches for photonics and optoelectronics. Journal of Applied Polymer Science, 2017, 134, .	2.6	67
39	Structural, Morphological and Electrochemical Impedance Study of CS:LiTf based Solid Polymer Electrolyte: Reformulated Arrhenius Equation for Ion Transport Study. International Journal of Electrochemical Science, 2016, 11, 9228-9244.	1.3	63
40	Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes. lonics, 2020, 26, 1829-1840.	2.4	62
41	Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan. Journal of Electronic Materials, 2017, 46, 6119-6130.	2.2	58
42	Employing of Trukhan Model to Estimate Ion Transport Parameters in PVA Based Solid Polymer Electrolyte. Polymers, 2019, 11, 1694.	4.5	58
43	Structural, Morphological, Electrical and Electrochemical Properties of PVA: CS-Based Proton-Conducting Polymer Blend Electrolytes. Membranes, 2020, 10, 71.	3.0	58
44	Electrical, Dielectric Property and Electrochemical Performances of Plasticized Silver Ion-Conducting Chitosan-Based Polymer Nanocomposites. Membranes, 2020, 10, 151.	3.0	57
45	High Proton Conducting Polymer Blend Electrolytes Based on Chitosan:Dextran with Constant Specific Capacitance and Energy Density. Biomolecules, 2019, 9, 267.	4.0	56
46	The Mixed Contribution of Ionic and Electronic Carriers to Conductivity in Chitosan Based Solid Electrolytes Mediated by CuNt Salt. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1942-1952.	3.7	55
47	The Study of Plasticized Amorphous Biopolymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan with High Ion Conductivity for Energy Storage Electrical Double-Layer Capacitors (EDLC) Device Application. Polymers, 2020, 12, 1938.	4.5	55
48	Structural and electrical characteristics of PVA:NaTf based solid polymer electrolytes: role of lattice energy of salts on electrical DC conductivity. Journal of Materials Science: Materials in Electronics, 2017, 28, 12873-12884.	2.2	54
49	Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte films. Ionics, 2018, 24, 777-785.	2.4	53
50	Structural, Impedance, and EDLC Characteristics of Proton Conducting Chitosan-Based Polymer Blend Electrolytes with High Electrochemical Stability. Molecules, 2019, 24, 3508.	3.8	51
51	Glycerolized Li+ Ion Conducting Chitosan-Based Polymer Electrolyte for Energy Storage EDLC Device Applications with Relatively High Energy Density. Polymers, 2020, 12, 1433.	4.5	51
52	New Method for the Development of Plasmonic Metal-Semiconductor Interface Layer: Polymer Composites with Reduced Energy Band Gap. Journal of Nanomaterials, 2017, 2017, 1-9.	2.7	49
53	Structural Characterization, Antimicrobial Activity, and <i>In Vitro</i> Cytotoxicity Effect of Black Seed Oil. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-9.	1.2	49
54	Reducing the Crystallite Size of Spherulites in PEO-Based Polymer Nanocomposites Mediated by Carbon Nanodots and Ag Nanoparticles. Nanomaterials, 2019, 9, 874.	4.1	49

#	Article	IF	Citations
55	Compatible Solid Polymer Electrolyte Based on Methyl Cellulose for Energy Storage Application: Structural, Electrical, and Electrochemical Properties. Polymers, 2020, 12, 2257.	4.5	49
56	Ion Transport Study in CS: POZ Based Polymer Membrane Electrolytes Using Trukhan Model. International Journal of Molecular Sciences, 2019, 20, 5265.	4.1	48
57	Metal Complex as a Novel Approach to Enhance the Amorphous Phase and Improve the EDLC Performance of Plasticized Proton Conducting Chitosan-Based Polymer Electrolyte. Membranes, 2020, 10, 132.	3.0	46
58	Impedance Spectroscopy as a Novel Approach to Probe the Phase Transition and Microstructures Existing in CS:PEO Based Blend Electrolytes. Scientific Reports, 2018, 8, 14308.	3.3	45
59	Influence of \$\$hbox {NH}_{4}\$\$Br as an ionic source on the structural/electrical properties of dextran-based biopolymer electrolytes and EDLC application. Bulletin of Materials Science, 2020, 43, 1.	1.7	45
60	The Study of Plasticized Solid Polymer Blend Electrolytes Based on Natural Polymers and Their Application for Energy Storage EDLC Devices. Polymers, 2020, 12, 2531.	4.5	45
61	Steps Toward the Band Gap Identification in Polystyrene Based Solid Polymer Nanocomposites Integrated with Tin Titanate Nanoparticles. Polymers, 2020, 12, 2320.	4.5	44
62	Synthesis of Porous Proton Ion Conducting Solid Polymer Blend Electrolytes Based on PVA: CS Polymers: Structural, Morphological and Electrochemical Properties. Materials, 2020, 13, 4890.	2.9	42
63	From Cellulose, Shrimp and Crab Shells to Energy Storage EDLC Cells: The Study of Structural and Electrochemical Properties of Proton Conducting Chitosan-Based Biopolymer Blend Electrolytes. Polymers, 2020, 12, 1526.	4.5	41
64	Protonic cell performance employing electrolytes based on plasticized methylcellulose-potato starch-NH4NO3. Ionics, 2019, 25, 559-572.	2.4	39
65	The Study of Dielectric Properties and Conductivity Relaxation of Ion Conducting Chitosan:NaTf Based Solid Electrolyte. International Journal of Electrochemical Science, 2018, 13, 10274-10288.	1.3	38
66	Tea from the drinking to the synthesis of metal complexes and fabrication of PVA based polymer composites with controlled optical band gap. Scientific Reports, 2020, 10, 18108.	3.3	38
67	Electrochemical characteristics of solid state double-layer capacitor constructed from proton conducting chitosan-based polymer blend electrolytes. Polymer Bulletin, 2021, 78, 3149-3167.	3.3	38
68	Synthesis of PVA/CeO2 Based Nanocomposites with Tuned Refractive Index and Reduced Absorption Edge: Structural and Optical Studies. Materials, 2021, 14, 1570.	2.9	38
69	The Study of Electrical and Electrochemical Properties of Magnesium Ion Conducting CS: PVA Based Polymer Blend Electrolytes: Role of Lattice Energy of Magnesium Salts on EDLC Performance. Molecules, 2020, 25, 4503.	3 . 8	37
70	Characteristics of a Plasticized PVA-Based Polymer Electrolyte Membrane and H+ Conductor for an Electrical Double-Layer Capacitor: Structural, Morphological, and Ion Transport Properties. Membranes, 2021, 11, 296.	3.0	37
71	The Study of Plasticized Sodium Ion Conducting Polymer Blend Electrolyte Membranes Based on Chitosan/Dextran Biopolymers: Ion Transport, Structural, Morphological and Potential Stability. Polymers, 2021, 13, 383.	4.5	36
72	Structural, Electrical and Electrochemical Properties of Glycerolized Biopolymers Based on Chitosan (CS): Methylcellulose (MC) for Energy Storage Application. Polymers, 2021, 13, 1183.	4.5	36

#	Article	IF	Citations
73	Effect of silicon powder on the optical characterization of Poly(methyl methacrylate) polymer composites. Journal of Materials Science: Materials in Electronics, 2017, 28, 4513-4520.	2.2	35
74	Metal framework as a novel approach for the fabrication of electric double layer capacitor device with high energy density using plasticized Poly(vinyl alcohol): Ammonium thiocyanate based polymer electrolyte. Arabian Journal of Chemistry, 2020, 13, 7247-7263.	4.9	35
75	Study of impedance and solid-state double-layer capacitor behavior of proton (H+)-conducting polymer blend electrolyte-based CS:PS polymers. Ionics, 2020, 26, 4635-4649.	2.4	35
76	Electrochemical Characteristics of Glycerolized PEO-Based Polymer Electrolytes. Membranes, 2020, 10, 116.	3.0	35
77	Design of potassium ion conducting PVA based polymer electrolyte with improved ion transport properties for EDLC device application. Journal of Materials Research and Technology, 2021, 13, 933-946.	5.8	35
78	A Study of Methylcellulose Based Polymer Electrolyte Impregnated with Potassium Ion Conducting Carrier: Impedance, EEC Modeling, FTIR, Dielectric, and Device Characteristics. Materials, 2021, 14, 4859.	2.9	35
79	Investigation of Ion Transport Parameters and Electrochemical Performance of Plasticized Biocompatible Chitosan-Based Proton Conducting Polymer Composite Electrolytes. Membranes, 2020, 10, 363.	3.0	34
80	Design of Polymer Blends Based on Chitosan: POZ with Improved Dielectric Constant for Application in Polymer Electrolytes and Flexible Electronics. Advances in Polymer Technology, 2020, 2020, 1-10.	1.7	34
81	Development of Polymer Blends Based on PVA:POZ with Low Dielectric Constant for Microelectronic Applications. Scientific Reports, 2019, 9, 13163.	3.3	33
82	Solid-state double layer capacitors and protonic cell fabricated with dextran from Leuconostoc mesenteroides based green polymer electrolyte. Materials Chemistry and Physics, 2020, 241, 122290.	4.0	33
83	The Study of EDLC Device with High Electrochemical Performance Fabricated from Proton Ion Conducting PVA-Based Polymer Composite Electrolytes Plasticized with Glycerol. Polymers, 2020, 12, 1896.	4.5	33
84	Characteristics of Dye-Sensitized Solar Cell Assembled from Modified Chitosan-Based Gel Polymer Electrolytes Incorporated with Potassium Iodide. Molecules, 2020, 25, 4115.	3.8	33
85	Structural, Impedance and Electrochemical Characteristics of Electrical Double Layer Capacitor Devices Based on Chitosan: Dextran Biopolymer Blend Electrolytes. Polymers, 2020, 12, 1411.	4.5	33
86	Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics. Journal of Electronic Materials, 2018, 47, 3800-3808.	2,2	32
87	A Polymer Blend Electrolyte Based on CS with Enhanced Ion Transport and Electrochemical Properties for Electrical Double Layer Capacitor Applications. Polymers, 2021, 13, 930.	4.5	32
88	Bio-Based Plasticized PVA Based Polymer Blend Electrolytes for Energy Storage EDLC Devices: Ion Transport Parameters and Electrochemical Properties. Materials, 2021, 14, 1994.	2.9	31
89	Polymer Composites with 0.98 Transparencies and Small Optical Energy Band Gap Using a Promising Green Methodology: Structural and Optical Properties. Polymers, 2021, 13, 1648.	4.5	30
90	Characteristics of Poly(vinyl Alcohol) (PVA) Based Composites Integrated with Green Synthesized Al3+-Metal Complex: Structural, Optical, and Localized Density of State Analysis. Polymers, 2021, 13, 1316.	4.5	28

#	Article	lF	CITATIONS
91	Blending and Characteristics of Electrochemical Double-Layer Capacitor Device Assembled from Plasticized Proton Ion Conducting Chitosan:Dextran:NH4PF6 Polymer Electrolytes. Polymers, 2020, 12, 2103.	4.5	26
92	Structural, impedance and electrochemical double-layer capacitor characteristics of improved number density of charge carrier electrolytes employing potato starch blend polymers. Ionics, 2020, 26, 5773-5804.	2.4	24
93	Plasticized H+ ion-conducting PVA:CS-based polymer blend electrolytes for energy storage EDLC application. Journal of Materials Science: Materials in Electronics, 2020, 31, 18554-18568.	2.2	24
94	Improving EDLC Device Performance Constructed from Plasticized Magnesium Ion Conducting Chitosan Based Polymer Electrolytes via Metal Complex Dispersion. Membranes, 2021, 11, 289.	3.0	24
95	Electropolishing and Mirror-like Preparation of Titanium in Choline Chloride-Ethylene Glycol Mixture Liquid. Electrochemistry, 2020, 88, 447-450.	1.4	24
96	Development of Flexible Plasticized Ion Conducting Polymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan (CS) with High Ion Transport Parameters Close to Gel Based Electrolytes. Gels, 2022, 8, 153.	4.5	23
97	Drawbacks of Low Lattice Energy Ammonium Salts for Ion-Conducting Polymer Electrolyte Preparation: Structural, Morphological and Electrical Characteristics of CS:PEO:NH4BF4-Based Polymer Blend Electrolytes. Polymers, 2020, 12, 1885.	4.5	22
98	Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes. Journal of Materials Science: Materials in Electronics, 2017, 28, 8928-8936.	2.2	20
99	Optical Dielectric Loss as a Novel Approach to Specify the Types of Electron Transition: XRD and UV-vis as a Non-Destructive Techniques for Structural and Optical Characterization of PEO Based Nanocomposites. Materials, 2020, 13, 2979.	2.9	19
100	Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storageâ€"EEC Modeling, Transport Properties, and Charge-Discharge Characteristics. Polymers, 2021, 13, 803.	4.5	18
101	Structural and electrochemical studies of proton conducting biopolymer blend electrolytes based on MC:Dextran for EDLC device application with high energy density. AEJ - Alexandria Engineering Journal, 2022, 61, 3985-3997.	6.4	18
102	Electrochemical performance of polymer blend electrolytes based on chitosan: dextran: impedance, dielectric properties, and energy storage study. Journal of Materials Science: Materials in Electronics, 2021, 32, 14846-14862.	2.2	17
103	Characteristics of PEO Incorporated with CaTiO3 Nanoparticles: Structural and Optical Properties. Polymers, 2021, 13, 3484.	4.5	17
104	Plasticized Polymer Blend Electrolyte Based on Chitosan for Energy Storage Application: Structural, Circuit Modeling, Morphological and Electrochemical Properties. Polymers, 2021, 13, 1233.	4.5	16
105	Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics. Membranes, 2020, 10, 389.	3.0	15
106	Energy Storage Behavior of Lithium-Ion Conducting poly(vinyl alcohol) (PVA): Chitosan(CS)-Based Polymer Blend Electrolyte Membranes: Preparation, Equivalent Circuit Modeling, Ion Transport Parameters, and Dielectric Properties. Membranes, 2020, 10, 381.	3.0	15
107	Fabrication of Co3O4 from Cobalt/2,6-Napthalenedicarboxylic Acid Metal-Organic Framework as Electrode for Supercapacitor Application. Materials, 2021, 14, 573.	2.9	15
108	The Study of Ion Transport Parameters in MC-Based Electrolyte Membranes Using EIS and Their Applications for EDLC Devices. Membranes, 2022, 12, 139.	3.0	15

#	Article	IF	CITATIONS
109	The strategy for controlling COVID-19 in Kurdistan Regional Government (KRG)/Iraq: Identification, epidemiology, transmission, treatment, and recovery. International Journal of Surgery Open, 2020, 25, 41-46.	0.7	14
110	ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte. Ionics, 2021, 27, 1143-1157.	2.4	14
111	Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes. Materials, 2022, 15, 170.	2.9	14
112	A Comparative Study on Structural, Morphological, and Tensile Properties of Binary and Ternary Epoxy Resin-Based Polymer Nanocomposites. Advances in Materials Science and Engineering, 2020, 2020, 1-11.	1.8	13
113	Studies of Circuit Design, Structural, Relaxation and Potential Stability of Polymer Blend Electrolyte Membranes Based on PVA:MC Impregnated with NH4I Salt. Membranes, 2022, 12, 284.	3.0	13
114	Characterization of Lithium Ion-Conducting Blend Biopolymer Electrolyte Based on CH–MC Doped with LiBF4. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1432-1438.	3.7	12
115	The Anodic Behaviour of Bulk Copper in Ethaline and 1-Butyl-3-Methylimidazolium Chloride. Applied Sciences (Switzerland), 2019, 9, 4401.	2.5	12
116	Characteristics of Glycerolized Chitosan: NH4NO3-Based Polymer Electrolyte for Energy Storage Devices with Extremely High Specific Capacitance and Energy Density Over 1000 Cycles. Polymers, 2020, 12, 2718.	4.5	12
117	Influence of scan rate on CV Pattern: Electrical and electrochemical properties of plasticized Methylcellulose: Dextran (MC:Dex) proton conducting polymer electrolytes. AEJ - Alexandria Engineering Journal, 2022, 61, 5919-5937.	6.4	11
118	Impedance and Dielectric Properties of PVC:NH4I Solid Polymer Electrolytes (SPEs): Steps toward the Fabrication of SPEs with High Resistivity. Materials, 2022, 15, 2143.	2.9	11
119	The Study of Structural, Impedance and Energy Storage Behavior of Plasticized PVA:MC Based Proton Conducting Polymer Blend Electrolytes. Materials, 2020, 13, 5030.	2.9	10
120	Characteristics of Plasticized Lithium Ion Conducting Green Polymer Blend Electrolytes Based on CS: Dextran with High Energy Density and Specific Capacitance. Polymers, 2021, 13, 3613.	4.5	10
121	Ion in Chitosan Based Solid Electrolyte. International Journal of Electrochemical Science, 2019, 14, 5521-5534.	1.3	9
122	Fabrication of Alternating Copolymers Based on Cyclopentadithiophene-Benzothiadiazole Dicarboxylic Imide with Reduced Optical Band Gap: Synthesis, Optical, Electrochemical, Thermal, and Structural Properties. Polymers, 2021, 13, 63.	4.5	9
123	Influence of Fluorine Substitution on the Optical, Thermal, Electrochemical and Structural Properties of Carbazole-Benzothiadiazole Dicarboxylic Imide Alternate Copolymers. Polymers, 2020, 12, 2910.	4.5	8
124	An Investigation into the PVA:MC:NH4Cl-Based Proton-Conducting Polymer-Blend Electrolytes for Electrochemical Double Layer Capacitor (EDLC) Device Application: The FTIR, Circuit Design and Electrochemical Studies. Molecules, 2022, 27, 1011.	3.8	8
125	Innovative Green Chemistry Approach to Synthesis of Sn2+-Metal Complex and Design of Polymer Composites with Small Optical Band Gaps. Molecules, 2022, 27, 1965.	3.8	8
126	Role of Hard-Acid/Hard-Base Interaction on Structural and Dielectric Behavior of Solid Polymer Electrolytes Based on Chitosan-XCF3SO3 (X = Li+, Na+, Ag+). Journal of Polymers, 2014, 2014, 1-9.	0.9	7

#	Article	IF	Citations
127	Surfaces modification of methylcellulose: Cobalt nitrate polymer electrolyte by sulfurated hydrogen gas treatment. Journal of Applied Polymer Science, 2018, 135, 46676.	2.6	7
128	Optical, Electrochemical, Thermal, and Structural Properties of Synthesized Fluorene/Dibenzosilole-Benzothiadiazole Dicarboxylic Imide Alternating Organic Copolymers for Photovoltaic Applications. Coatings, 2020, 10, 1147.	2.6	6
129	Impact of ethynylene linkers on the optical and electrochemical properties of benzothiadiazole based alternate conjugated polymers. Arabian Journal of Chemistry, 2021, 14, 103320.	4.9	6
130	Novel Electropolishing of Pure Metallic Titanium in Choline Chloride-Based Various Organic Solvents. Electrochemistry, 2021, 89, 67-70.	1.4	6
131	Synthesis, Optical, Thermal and Structural Characteristics of Novel Thermocleavable Polymers Based on Phthalate Esters. Polymers, 2020, 12, 2791.	4.5	5
132	High Cyclability Energy Storage Device with Optimized Hydroxyethyl Cellulose-Dextran-Based Polymer Electrolytes: Structural, Electrical and Electrochemical Investigations. Polymers, 2021, 13, 3602.	4.5	5
133	The effect of activated carbon additives on lead sulphide thin film for solar cell applications. Journal of Alloys and Compounds, 2021, 864, 158117.	5.5	4
134	Investigation of flexural and creep behavior of epoxy-based nano-sized CaTiO3 particles. Results in Materials, 2021, 9, 100164.	1.8	4
135	Effect of Copper Ion and Water on Anodic Dissolution of Metallic Copper in a Deep Eutectic Solvent (DES). Electrochemistry, 2021, 89, 71-74.	1.4	3
136	A density functional theory study on multiple exciton generation in lead chalcogenides. Molecular Crystals and Liquid Crystals, 2019, 693, 57-65.	0.9	2
137	Characteristics of Low Band Gap Copolymers Containing Anthracene-Benzothiadiazole Dicarboxylic Imide: Synthesis, Optical, Electrochemical, Thermal and Structural Studies. Polymers, 2021, 13, 62.	4.5	2
138	Electrical and structural characteristics of fish skin gelatin as alternative biopolymer electrolyte. Physica Scripta, 2022, 97, 055003.	2.5	2
139	Effect of the Reduction of Silver Ions to Silver Nanoparticles on the Dielectric Properties of Chitosan-Silver Triflate Electrolyte., 2009,,.		1
140	On the structural-optical correlation of ZnO nanospheres synthesized using thermal evaporation technique. Molecular Crystals and Liquid Crystals, 2019, 693, 66-75.	0.9	1
141	Synthesis of Amorphous Conjugated Copolymers Based on Dithienosilole-Benzothiadiazole Dicarboxylic Imide with Tuned Optical Band Gaps and High Thermal Stability. Applied Sciences (Switzerland), 2021, 11, 4866.	2.5	1
142	The Role of Sintering Temperature and Dual Metal Substitutions (Al3+, Ti4+) in the Development of NASICON-Structured Electrolyte. Materials, 2021, 14, 7342.	2.9	1