
José Antonio EnrÃ-quez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4153706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implications of mitochondrial DNA mutations in human induced pluripotent stem cells. Nature Reviews Genetics, 2022, 23, 69-70.	16.3	5
2	The portrait of liver cancer is shaped by mitochondrial genetics. Cell Reports, 2022, 38, 110254.	6.4	10
3	Sodium in mitochondrial redox signaling. Antioxidants and Redox Signaling, 2022, , .	5.4	5
4	Variant pathogenic prediction by locus variability: the importance of the current picture of evolution. European Journal of Human Genetics, 2022, 30, 555-559.	2.8	3
5	The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life, 2022, 74, 629-644.	3.4	5
6	Ultrasmall Manganese Ferrites for In Vivo Catalase Mimicking Activity and Multimodal Bioimaging. Small, 2022, 18, e2106570.	10.0	23
7	Heteroplasmy of Wild-Type Mitochondrial DNA Variants in Mice Causes Metabolic Heart Disease With Pulmonary Hypertension and Frailty. Circulation, 2022, 145, 1084-1101.	1.6	10
8	mtDNA variability determines spontaneous joint aging damage in a conplastic mouse model. Aging, 2022, 14, 5966-5983.	3.1	3
9	Transcriptome and proteome mapping in the sheep atria reveal molecular featurets of atrial fibrillation progression. Cardiovascular Research, 2021, 117, 1760-1775.	3.8	14
10	Digitonin concentration is determinant for mitochondrial supercomplexes analysis by BlueNative page. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148332.	1.0	5
11	Generation of Reactive Oxygen Species by Mitochondria. Antioxidants, 2021, 10, 415.	5.1	121
12	Mitochondrial DNA impact on joint damaged process in a conplastic mouse model after being surgically induced with osteoarthritis. Scientific Reports, 2021, 11, 9112.	3.3	6
13	Functional segmentation of CoQ and cyt c pools by respiratory complex superassembly. Free Radical Biology and Medicine, 2021, 167, 232-242.	2.9	25
14	Not all <scp>mitochondrial DNAs</scp> are made equal and the nucleus knows it. IUBMB Life, 2021, 73, 511-529.	3.4	20
15	p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biology, 2021, 19, e3001447.	5.6	8
16	Regulation and functional role of the electron transport chain supercomplexes. Biochemical Society Transactions, 2021, 49, 2655-2668.	3.4	40
17	The spatio-temporal organization of mitochondrial F1FO ATP synthase in cristae depends on its activity mode. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148091.	1.0	29
18	The Value of Mouse Models of Rare Diseases: A Spanish Experience. Frontiers in Genetics, 2020, 11, 583932.	2.3	12

JOSé ANTONIO ENRÃQUEZ

#	Article	IF	CITATIONS
19	Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature, 2020, 586, 287-291.	27.8	139
20	Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Science Advances, 2020, 6, eaba5345.	10.3	31
21	A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell, 2020, 183, 94-109.e23.	28.9	360
22	Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nature Metabolism, 2020, 2, 974-988.	11.9	40
23	Analyzing electron transport chain supercomplexes. Methods in Cell Biology, 2020, 155, 181-197.	1.1	8
24	Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Q _{pool} . Science Advances, 2020, 6, eaba7509.	10.3	68
25	Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells. Cancer Immunology Research, 2020, 8, 685-697.	3.4	6
26	Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. EMBO Reports, 2020, 21, e50287.	4.5	42
27	Mutations in the ND2 Subunit of Mitochondrial Complex I Are Sufficient to Confer Increased Tumorigenic and Metastatic Potential to Cancer Cells. Cancers, 2019, 11, 1027.	3.7	18
28	PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Scientific Reports, 2019, 9, 15022.	3.3	34
29	Regulation of Mother-to-Offspring Transmission of mtDNA Heteroplasmy. Cell Metabolism, 2019, 30, 1120-1130.e5.	16.2	66
30	Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nature Metabolism, 2019, 1, 201-211.	11.9	119
31	ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-eIF2α Axis. Molecular Cell, 2019, 74, 877-890.e6.	9.7	214
32	FRI0522â€MITOCHONDRIAL BACKGROUND IMPACT ON THE JOINT DEGENERATION PROCESS DURING AGING AF FORCED EXERCISE: A CONPLASTIC MOUSE MODEL. , 2019, , .	AND	2
33	Mind your mouse strain. Nature Metabolism, 2019, 1, 5-7.	11.9	30
34	Activation of Serine One-Carbon Metabolism by Calcineurin Aβ1 Reduces Myocardial Hypertrophy and Improves Ventricular Function. Journal of the American College of Cardiology, 2018, 71, 654-667.	2.8	45
35	Protein corona and phospholipase activity drive selective accumulation of nanomicelles in atherosclerotic plaques. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 643-650.	3.3	12
36	Ablation of the stress protease OMA1 protects against heart failure in mice. Science Translational Medicine, 2018, 10, .	12.4	66

#	Article	IF	CITATIONS
37	Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nature Communications, 2018, 9, 2658.	12.8	242
38	p38αÂblocks brown adipose tissue thermogenesis through p38δÂinhibition. PLoS Biology, 2018, 16, e2004455.	5.6	30
39	Mitochondrial Complex I activity signals antioxidant response through ERK5. Scientific Reports, 2018, 8, 7420.	3.3	38
40	The cristae modulator Optic atrophy 1 requires mitochondrial ATP synthase oligomers to safeguard mitochondrial function. Nature Communications, 2018, 9, 3399.	12.8	111
41	Comprehensive Quantification of the Modified Proteome Reveals Oxidative Heart Damage in Mitochondrial Heteroplasmy. Cell Reports, 2018, 23, 3685-3697.e4.	6.4	39
42	SAT0561â€Mitochondrial background influences the joint evolution in a conplastic mouse model of ageing. , 2018, , .		0
43	Building a Beautiful Beast: Mammalian Respiratory Complex I. Cell Metabolism, 2017, 25, 4-5.	16.2	11
44	Correction: Retraction: Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence. Nature Communications, 2017, 8, 14006.	12.8	0
45	Mitochondria in endothelial cells: Sensors and integrators of environmental cues. Redox Biology, 2017, 12, 821-827.	9.0	100
46	Micro RNA â€661 modulates redox and metabolic homeostasis in colon cancer. Molecular Oncology, 2017, 11, 1768-1787.	4.6	17
47	MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications, 2017, 8, 856.	12.8	54
48	Increased localization of <scp>APP</scp> 99 in mitochondriaâ€associated <scp>ER</scp> membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO Journal, 2017, 36, 3356-3371.	7.8	164
49	In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer. Scientific Reports, 2017, 7, 13242.	3.3	37
50	One-Step Fast Synthesis of Nanoparticles for MRI: Coating Chemistry as the Key Variable Determining Positive or Negative Contrast. Langmuir, 2017, 33, 10239-10247.	3.5	43
51	CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genetics, 2017, 13, e1006985.	3.5	54
52	ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathogens, 2017, 13, e1006651.	4.7	75
53	Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature, 2016, 535, 561-565.	27.8	333
54	Optic Atrophy 1 Is Epistatic to the Core MICOS Component MIC60 in Mitochondrial Cristae Shape Control. Cell Reports, 2016, 17, 3024-3034.	6.4	127

José Antonio EnrÃquez

#	Article	IF	CITATIONS
55	The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency. Cell Reports, 2016, 15, 197-209.	6.4	215
56	Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan. Cell Metabolism, 2016, 23, 725-734.	16.2	296
57	Respiratory supercomplexes and the functional segmentation of the CoQ pool. Free Radical Biology and Medicine, 2016, 100, 5-13.	2.9	30
58	The Chromatin Remodeling Complex Chd4/NuRD Controls Striated Muscle Identity and Metabolic Homeostasis. Cell Metabolism, 2016, 23, 881-892.	16.2	68
59	Hypothesis Driven versus Hypothesis-free: Filling the Gaps in CoQ Biosynthesis. Cell Metabolism, 2016, 24, 525-526.	16.2	2
60	Role of Mitochondrial Complex IV in Age-Dependent Obesity. Cell Reports, 2016, 16, 2991-3002.	6.4	65
61	Mechanism of super-assembly of respiratory complexes III and IV. Nature, 2016, 539, 579-582.	27.8	157
62	Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Scientific Reports, 2016, 6, 27351.	3.3	131
63	Fast synthesis and bioconjugation of ⁶⁸ Ga coreâ€doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media and Molecular Imaging, 2016, 11, 203-210.	0.8	68
64	Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nature Immunology, 2016, 17, 1037-1045.	14.5	259
65	Mitochondrial Cristae: Where Beauty Meets Functionality. Trends in Biochemical Sciences, 2016, 41, 261-273.	7.5	605
66	Supramolecular Organization of Respiratory Complexes. Annual Review of Physiology, 2016, 78, 533-561.	13.1	168
67	Adjusting MtDNA Quantification in Whole Blood for Peripheral Blood Platelet and Leukocyte Counts. PLoS ONE, 2016, 11, e0163770.	2.5	68
68	Mitochondrial DNA-related disorders: emphasis on mechanisms and heterogeneity. Turkish Journal of Biology, 2015, 39, 840-855.	0.8	0
69	MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. OncoImmunology, 2015, 4, e985924.	4.6	48
70	The complex crosstalk between mitochondria and the nucleus: What goes in between?. International Journal of Biochemistry and Cell Biology, 2015, 63, 10-15.	2.8	86
71	HIF-1α and PFKFB3 Mediate a Tight Relationship Between Proinflammatory Activation and Anerobic Metabolism in Atherosclerotic Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1463-1471.	2.4	150
72	Bmi1 limits dilated cardiomyopathy and heart failure by inhibiting cardiac senescence. Nature Communications, 2015, 6, 6473.	12.8	14

#	Article	IF	CITATIONS
73	A Mitochondria-Specific Isoform of FASTK Is Present In Mitochondrial RNA Granules and Regulates Gene Expression and Function. Cell Reports, 2015, 10, 1110-1121.	6.4	77
74	Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses. Cell Metabolism, 2015, 22, 485-498.	16.2	239
75	An EMMPRIN/Î ³ -catenin/Nm23 complex drives ATP production and actomyosin contractility at endothelial junctions. Journal of Cell Science, 2014, 127, 3768-81.	2.0	22
76	Coenzyme Q and the Respiratory Chain: Coenzyme Q Pool and Mitochondrial Supercomplexes. Molecular Syndromology, 2014, 5, 119-140.	0.8	68
77	ROS-Triggered Phosphorylation of Complex II by Fgr Kinase Regulates Cellular Adaptation to Fuel Use. Cell Metabolism, 2014, 19, 1020-1033.	16.2	101
78	Laminar shear stress regulates mitochondrial dynamics, bioenergetics responses and PRX3 activation in endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2403-2413.	4.1	34
79	ATP-Dependent Lon Protease Controls Tumor Bioenergetics by Reprogramming Mitochondrial Activity. Cell Reports, 2014, 8, 542-556.	6.4	186
80	Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130443.	4.0	184
81	A new non-canonical pathway of Cαq protein regulating mitochondrial dynamics and bioenergetics. Cellular Signalling, 2014, 26, 1135-1146.	3.6	28
82	The function of the respiratory supercomplexes: The plasticity model. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 444-450.	1.0	252
83	Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death and Disease, 2013, 4, e691-e691.	6.3	192
84	Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture. Journal of Proteomics, 2013, 91, 466-477.	2.4	110
85	Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain. Science, 2013, 340, 1567-1570.	12.6	687
86	Defective Extracellular Pyrophosphate Metabolism Promotes Vascular Calcification in a Mouse Model of Hutchinson-Gilford Progeria Syndrome That Is Ameliorated on Pyrophosphate Treatment. Circulation, 2013, 127, 2442-2451.	1.6	188
87	Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency. Cell, 2013, 155, 160-171.	28.9	955
88	Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Human Molecular Genetics, 2013, 22, 1233-1248.	2.9	87
89	A form of mitofusin 2 (Mfn2) lacking the transmembrane domains and the COOH-terminal end stimulates metabolism in muscle and liver cells. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1208-E1221.	3.5	25
90	Length variation in the mouse mitochondrial <scp>tRNA^A</scp> ^{rg} DHU loop size promotes oxidative phosphorylation functional differences. FEBS Journal, 2013, 280, 4983-4998.	4.7	8

#	Article	IF	CITATIONS
91	Increased Learning and Brain Long-Term Potentiation in Aged Mice Lacking DNA Polymerase μ. PLoS ONE, 2013, 8, e53243.	2.5	17
92	Cells Lacking Rieske Iron-Sulfur Protein Have a Reactive Oxygen Species-Associated Decrease in Respiratory Complexes I and IV. Molecular and Cellular Biology, 2012, 32, 415-429.	2.3	107
93	Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO Journal, 2012, 31, 2117-2133.	7.8	230
94	NDUFA4 Is a Subunit of Complex IV of the Mammalian Electron Transport Chain. Cell Metabolism, 2012, 16, 378-386.	16.2	323
95	Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death and Differentiation, 2012, 19, 743-755.	11.2	230
96	Induction of the Mitochondrial NDUFA4L2 Protein by HIF-1α Decreases Oxygen Consumption by Inhibiting Complex I Activity. Cell Metabolism, 2011, 14, 768-779.	16.2	276
97	Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion, 2011, 11, 207-213.	3.4	139
98	A genome-wide shRNA screen for new OxPhos related genes. Mitochondrion, 2011, 11, 467-475.	3.4	14
99	Allotopic expression of mitochondrial-encoded genes in mammals: achieved goal, undemonstrated mechanism or impossible task?. Nucleic Acids Research, 2011, 39, 225-234.	14.5	1,296
100	Evolution Meets Disease: Penetrance and Functional Epistasis of Mitochondrial tRNA Mutations. PLoS Genetics, 2011, 7, e1001379.	3.5	51
101	Mitochondrial DNA mutations affect calcium handling in differentiated neurons. Brain, 2010, 133, 787-796.	7.6	43
102	Five Entry Points of the Mitochondrially Encoded Subunits in Mammalian Complex I Assembly. Molecular and Cellular Biology, 2010, 30, 3038-3047.	2.3	68
103	Oxidative Phosphorylation Induces De Novo Expression of the MHC Class I in Tumor Cells through the ERK5 Pathway. Journal of Immunology, 2010, 185, 3498-3503.	0.8	58
104	Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain, 2010, 133, 797-807.	7.6	108
105	Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovascular Research, 2010, 87, 356-365.	3.8	61
106	Isolation of mitochondria for biogenetical studies: An update. Mitochondrion, 2010, 10, 253-262.	3.4	158
107	Nuclear transcription factors in mammalian mitochondria. Genome Biology, 2010, 11, 215.	9.6	83
108	Mitochondrial gene expression is regulated at multiple levels and differentially in the heart and liver by thyroid hormones. Current Genetics, 2008, 54, 13-22.	1.7	39

JOSé ANTONIO ENRÃQUEZ

#	Article	IF	CITATIONS
109	Respiratory Active Mitochondrial Supercomplexes. Molecular Cell, 2008, 32, 529-539.	9.7	703
110	Restoration of electron transport without proton pumping in mammalian mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18735-18739.	7.1	75
111	Cisplatin-mediated impairment of mitochondrial DNA metabolism inversely correlates with glutathione levels. Biochemical Journal, 2008, 414, 93-102.	3.7	50
112	Functional Genetic Analysis of the Mammalian Mitochondrial DNA Encoded Peptides. Methods in Molecular Biology, 2008, 457, 379-390.	0.9	11
113	In Vivo and In Organello Analyses of Mitochondrial Translation. Methods in Cell Biology, 2007, 80, 571-588.	1.1	45
114	The Role of the Mitochondrion in Sperm Function: Is There a Place for Oxidative Phosphorylation or Is This a Purely Glycolytic Process?. Current Topics in Developmental Biology, 2007, 77, 3-19.	2.2	134
115	Reply to "Reactive oxygen species and the segregation of mtDNA sequence variants― Nature Genetics, 2007, 39, 572-572.	21.4	0
116	Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene, 2006, 368, 21-27.	2.2	92
117	Isolation of Mitochondria from Mammalian Tissues and Cultured Cells. , 2006, , 69-77.		10
118	Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nature Genetics, 2006, 38, 1261-1268.	21.4	301
119	m.6267G>A: a recurrent mutation in the human mitochondrial DNA that reduces cytochrome c oxidase activity and is associated with tumors. Human Mutation, 2006, 27, 575-582.	2.5	56
120	Respiratory Complex III Is Required to Maintain Complex I in Mammalian Mitochondria. Molecular Cell, 2004, 13, 805-815.	9.7	402
121	Replication and Transcription of Mammalian Mitochondrial Dna. Experimental Physiology, 2003, 88, 41-56.	2.0	333
122	Mitochondria from ejaculated human spermatozoa do not synthesize proteins. FEBS Letters, 2003, 553, 205-208.	2.8	26
123	An intragenic suppressor in the cytochrome c oxidase I gene of mouse mitochondrial DNA. Human Molecular Genetics, 2003, 12, 329-339.	2.9	71
124	Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Research, 2003, 31, 5349-5355.	14.5	101
125	Mitochondrial DNA Content of Human Spermatozoa1. Biology of Reproduction, 2003, 68, 180-185.	2.7	79
126	Isolation of biogenetically competent mitochondria from mammalian tissues and cultured cells. Methods, 2002, 26, 292-297.	3.8	142

#	Article	IF	CITATIONS
127	The thankless task of playing genetics with mammalian mitochondrial DNA: a 30-year review. Mitochondrion, 2002, 2, 3-25.	3.4	7
128	Research of single mitochondrial nucleotide substitutions in male infertility should consider human mitochondrial haplogroups. Journal of Developmental and Physical Disabilities, 2002, 25, 372-373.	3.6	6
129	Inter-mitochondrial complementation of mtDNA mutations and nuclear context. Nature Genetics, 2002, 30, 360-360.	21.4	23
130	Mechanism of mammalian mitochondrial DNA replication: import of mitochondrial transcription factor A into isolated mitochondria stimulates 7S DNA synthesis. Nucleic Acids Research, 2001, 29, 3657-3663.	14.5	59
131	Association between seminal plasma carnitine and sperm mitochondrial enzymatic activities. Journal of Developmental and Physical Disabilities, 2001, 24, 335-340.	3.6	35
132	The Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episode Syndrome-associated Human Mitochondrial tRNALeu(UUR) Mutation Causes Aminoacylation Deficiency and Concomitant Reduced Association of mRNA with Ribosomes. Journal of Biological Chemistry, 2000, 275, 19198-19209.	3.4	176
133	Very Rare Complementation between Mitochondria Carrying Different Mitochondrial DNA Mutations Points to Intrinsic Genetic Autonomy of the Organelles in Cultured Human Cells. Journal of Biological Chemistry, 2000, 275, 11207-11215.	3.4	85
134	Human mtDNA Haplogroups Associated with High or Reduced Spermatozoa Motility. American Journal of Human Genetics, 2000, 67, 682-696.	6.2	426
135	Seminal quality correlates with mitochondrial functionality. Clinica Chimica Acta, 2000, 300, 97-105.	1.1	84
136	Autonomous Regulation in Mammalian Mitochondrial DNA Transcription. Biological Chemistry, 1999, 380, 737-47.	2.5	49
137	Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone. Molecular and Cellular Biology, 1999, 19, 657-670.	2.3	147
138	Mutations of SURF-1 in Leigh Disease Associated with Cytochrome c Oxidase Deficiency. American Journal of Human Genetics, 1998, 63, 1609-1621.	6.2	504
139	Familial multiple symmetric lipomatosis associated with the A8344G mutation of mitochondrial DNA. Neurology, 1998, 51, 258-260.	1.1	80
140	The Deafness-Associated Mitochondrial DNA Mutation at Position 7445, Which Affects tRNA ^{Ser(UCN)} Precursor Processing, Has Long-Range Effects on NADH Dehydrogenase Subunit ND6 Gene Expression. Molecular and Cellular Biology, 1998, 18, 5868-5879.	2.3	180
141	[17] Analysis of aminoacylation of human mitochondrial tRNAs. Methods in Enzymology, 1996, 264, 183-196.	1.0	63
142	[6] In Organello RNA synthesis system from mammalian liver and brain. Methods in Enzymology, 1996, 264, 50-57.	1.0	31
143	Transient activation of mitochondrial translation regulates the expression of the mitochondrial genome during mammalian mitochondrial differentiation. Biochemical Journal, 1996, 316, 183-191.	3.7	67
144	Evidence for aminoacylation-induced conformational changes in human mitochondrial tRNAs Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8300-8305.	7.1	28

José Antonio EnrÃquez

#	Article	IF	CITATIONS
145	Synaptosomal development in rats from phenylketonuric mothers. Journal of Inherited Metabolic Disease, 1996, 19, 385-386.	3.6	0
146	The Synthesis of mRNA in Isolated Mitochondria can be Maintained for Several Hours and is Inhibited by High Levels of ATP. FEBS Journal, 1996, 237, 601-610.	0.2	61
147	MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNALys and premature translation termination. Nature Genetics, 1995, 10, 47-55.	21.4	273
148	Highly efficient DNA synthesis in isolated mitochondria from rat liver. Nucleic Acids Research, 1994, 22, 1861-1865.	14.5	46
149	RNA synthesis in isolated mitochondria from brain cortex, cerebellum and stem: Evidence of different transcriptional rates. International Journal of Biochemistry & Cell Biology, 1993, 25, 1951-1956.	0.5	9
150	Use of resolving density gradient created with dextran and poly(ethylene glycol) to purify brain synaptosomes. Journal of Proteomics, 1993, 27, 1-10.	2.4	3
151	Specific increase of a mitochondrial RNA transcript in chronic ethanol-fed rats. FEBS Letters, 1992, 304, 285-288.	2.8	14
152	A simple procedure for recovering the denaturing effect of methylmercury in agarose gel electrophoresis. BioTechniques, 1992, 12, 480-2.	1.8	10
153	Saturation of the processing of newly synthesized rRNA in isolated brain mitochondria. FEBS Letters, 1991, 280, 32-36.	2.8	26
154	Rat Brain Synaptosomes Prepared by Phase Partition. Journal of Neurochemistry, 1990, 55, 1841-1849.	3.9	19
155	The Portrait of Liver Cancer is Shaped by Mitochondrial Genetics. SSRN Electronic Journal, 0, , .	0.4	0