List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4152517/publications.pdf Version: 2024-02-01

SHAO-MELCHEN

#	Article	IF	CITATIONS
1	Nanosized Carbon Particles From Natural Gas Soot. Chemistry of Materials, 2009, 21, 2803-2809.	3.2	643
2	Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 5555-5562.	6.6	628
3	Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 2016, 28, 29-43.	8.2	603
4	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	23.0	563
5	Carbonâ€5upported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Advanced Materials, 2018, 30, e1801995.	11.1	479
6	Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects. Angewandte Chemie - International Edition, 2009, 48, 4386-4389.	7.2	476
7	Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nature Communications, 2019, 10, 631.	5.8	423
8	One-Pot Synthesis, Photoluminescence, and Electrocatalytic Properties of Subnanometer-Sized Copper Clusters. Journal of the American Chemical Society, 2011, 133, 2060-2063.	6.6	422
9	Water-Soluble, Isolable Gold Clusters Protected by Tiopronin and Coenzyme A Monolayers. Langmuir, 1999, 15, 66-76.	1.6	395
10	Ultrahighâ€Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach. Advanced Functional Materials, 2015, 25, 7530-7538.	7.8	359
11	Ultrathin N-Doped Mo ₂ C Nanosheets with Exposed Active Sites as Efficient Electrocatalyst for Hydrogen Evolution Reactions. ACS Nano, 2017, 11, 12509-12518.	7.3	350
12	Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 2014, 268, 124-131.	6.5	339
13	N-Doped Carbon-Wrapped Cobalt Nanoparticles on N-Doped Graphene Nanosheets for High-Efficiency Hydrogen Production. Chemistry of Materials, 2015, 27, 2026-2032.	3.2	305
14	CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy, 2016, 28, 143-150.	8.2	278
15	Gateway Reactions to Diverse, Polyfunctional Monolayer-Protected Gold Clusters. Journal of the American Chemical Society, 1998, 120, 4845-4849.	6.6	277
16	Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catalysis, 2020, 10, 7584-7618.	5.5	274
17	Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale, 2015, 7, 6136-6142.	2.8	269
18	Porous metallic MoO ₂ -supported MoS ₂ nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale, 2015, 7, 5203-5208.	2.8	267

#	Article	IF	CITATIONS
19	Hierarchical spheres constructed by defect-rich MoS 2 /carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy, 2016, 22, 490-498.	8.2	267
20	Golden single-atomic-site platinum electrocatalysts. Nature Materials, 2018, 17, 1033-1039.	13.3	266
21	High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale, 2013, 5, 10283.	2.8	265
22	Enhanced Photocatalytic Performances of CeO ₂ /TiO ₂ Nanobelt Heterostructures. Small, 2013, 9, 3864-3872.	5.2	262
23	MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 11358.	5.2	262
24	Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi ₅ O ₇ Br Nanostructures: Enhanced Performance by Oxygen Vacancies. Journal of the American Chemical Society, 2020, 142, 12430-12439.	6.6	260
25	Quantized Capacitance Charging of Monolayer-Protected Au Clusters. Journal of Physical Chemistry B, 1998, 102, 9898-9907.	1.2	258
26	Silica-Coated CdTe Quantum Dots Functionalized with Thiols for Bioconjugation to IgG Proteins. Journal of Physical Chemistry B, 2006, 110, 5779-5789.	1.2	258
27	Composition Effects of FePt Alloy Nanoparticles on the Electro-Oxidation of Formic Acid. Langmuir, 2007, 23, 11303-11310.	1.6	243
28	Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction. Electrochimica Acta, 2015, 166, 26-31.	2.6	242
29	Three-Dimensional Hierarchical Frameworks Based on MoS ₂ Nanosheets Self-Assembled on Graphene Oxide for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2014, 6, 21534-21540.	4.0	235
30	Electrochemical Quantized Capacitance Charging of Surface Ensembles of Gold Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 9996-10000.	1.2	234
31	The Monolayer Thickness Dependence of Quantized Double-Layer Capacitances of Monolayer-Protected Gold Clusters. Analytical Chemistry, 1999, 71, 3703-3711.	3.2	224
32	CoSe ₂ Nanoparticles Encapsulated by Nâ€Doped Carbon Framework Intertwined with Carbon Nanotubes: Highâ€Performance Dualâ€Role Anode Materials for Both Li―and Naâ€Ion Batteries. Advanced Science, 2018, 5, 1800763.	5.6	215
33	Alkanethiolate-Protected Copper Nanoparticles:  Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution. Journal of Physical Chemistry B, 2001, 105, 8816-8820.	1.2	214
34	Electrocatalytic Reduction of Oxygen by FePt Alloy Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 3891-3898.	1.5	211
35	Carbon-supported PdM (M=Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. Journal of Power Sources, 2009, 187, 298-304.	4.0	201
36	Nitrogen-Doped and CdSe Quantum-Dot-Sensitized Nanocrystalline TiO ₂ Films for Solar Energy Conversion Applications. Journal of Physical Chemistry C, 2008, 112, 1282-1292.	1.5	192

#	Article	IF	CITATIONS
37	Ultrathin MoO 3 nanocrystalsself-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy, 2015, 12, 510-520.	8.2	192
38	Enhancement of Ethanol Vapor Sensing of TiO ₂ Nanobelts by Surface Engineering. ACS Applied Materials & Interfaces, 2010, 2, 3263-3269.	4.0	188
39	Graphitic Nitrogen Is Responsible for Oxygen Electroreduction on Nitrogen-Doped Carbons in Alkaline Electrolytes: Insights from Activity Attenuation Studies and Theoretical Calculations. ACS Catalysis, 2018, 8, 6827-6836.	5.5	188
40	Oxygen Reduction Catalyzed by Platinum Nanoparticles Supported on Graphene Quantum Dots. ACS Catalysis, 2013, 3, 831-838.	5.5	185
41	MoS ₂ nanosheet-coated CoS ₂ nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 22886-22891.	5.2	185
42	Surface Manipulation of the Electronic Energy of Subnanometer-Sized Gold Clusters:  An Electrochemical and Spectroscopic Investigation. Nano Letters, 2003, 3, 75-79.	4.5	175
43	Arenethiolate Monolayer-Protected Gold Clusters. Langmuir, 1999, 15, 682-689.	1.6	169
44	Alkanethiolate-Protected Palladium Nanoparticles. Chemistry of Materials, 2000, 12, 540-547.	3.2	165
45	Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy, 2015, 16, 357-366.	8.2	162
46	Core–Shell Nanocomposites Based on Gold Nanoparticle@Zinc–Iron-Embedded Porous Carbons Derived from Metal–Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2016, 6, 1045-1053.	5.5	151
47	Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chemical Engineering Journal, 2020, 393, 124726.	6.6	150
48	Nanocomposites Based on CoSe ₂ -Decorated FeSe ₂ Nanoparticles Supported on Reduced Graphene Oxide as High-Performance Electrocatalysts toward Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 19258-19270.	4.0	147
49	Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale, 2017, 9, 994-1006.	2.8	143
50	Electro-oxidation of formic acid catalyzed by FePt nanoparticles. Physical Chemistry Chemical Physics, 2006, 8, 2779.	1.3	142
51	Alkanethiolate-Protected PbS Nanoclusters:Â Synthesis, Spectroscopic and Electrochemical Studies. Chemistry of Materials, 2000, 12, 3864-3870.	3.2	139
52	Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets. Journal of Materials Chemistry A, 2017, 5, 18261-18269.	5.2	136
53	Precise Positioning of Nanoparticles on Surfaces Using Scanning Probe Lithography. Nano Letters, 2003, 3, 389-395.	4.5	134
54	Self-Assembling of Monolayer-Protected Gold Nanoparticles. Journal of Physical Chemistry B, 2000, 104. 663-667.	1.2	132

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Ultrathin WO3Nanodisks Utilizing Long-Chain Poly(ethylene) Tj ETQq1 1 0.7	84314 rgB ⁻ 1.2	Г /Qyerlock 1
56	Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. Nanoscale, 2018, 10, 158-166.	2.8	132
57	Iron-Catalyzed Carboamination of Olefins: Synthesis of Amines and Disubstituted β-Amino Acids. Journal of the American Chemical Society, 2017, 139, 13076-13082.	6.6	131
58	Nitrogen and sulfur co-doped porous carbon derived from human hair as highly efficient metal-free electrocatalysts for hydrogen evolution reactions. Journal of Materials Chemistry A, 2015, 3, 8840-8846.	5.2	130
59	Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals. Physical Chemistry Chemical Physics, 2010, 12, 12544.	1.3	127
60	Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Applied Catalysis B: Environmental, 2022, 302, 120838.	10.8	124
61	Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials. ACS Applied Materials & Interfaces, 2016, 8, 5065-5069.	4.0	122
62	Janus Nanostructures Based on Auâ^'TiO ₂ Heterodimers and Their Photocatalytic Activity in the Oxidation of Methanol. ACS Applied Materials & Interfaces, 2009, 1, 2060-2065.	4.0	120
63	Synergy between Plasmonic and Electrocatalytic Activation of Methanol Oxidation on Palladium–Silver Alloy Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 8794-8798.	7.2	120
64	Porous Carbon-Supported Gold Nanoparticles for Oxygen Reduction Reaction: Effects of Nanoparticle Size. ACS Applied Materials & amp; Interfaces, 2016, 8, 20635-20641.	4.0	118
65	Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy, 2017, 41, 772-779.	8.2	118
66	Total Water Splitting Catalyzed by Co@Ir Core–Shell Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Derived from Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 5105-5114.	3.2	113
67	Magnetoelectrochemistry of Cold Nanoparticle Quantized Capacitance Charging. Journal of the American Chemical Society, 2002, 124, 5280-5281.	6.6	112
68	Langmuirâ^'Blodgett Fabrication of Two-Dimensional Robust Cross-Linked Nanoparticle Assemblies. Langmuir, 2001, 17, 2878-2884.	1.6	110
69	Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes. ACS Nano, 2008, 2, 2167-2173.	7.3	110
70	Cu(II) Ions Induced Structural Transformation of Cobalt Selenides for Remarkable Enhancement in Oxygen/Hydrogen Electrocatalysis. ACS Catalysis, 2019, 9, 10761-10772.	5.5	110
71	Monolayer-Protected Cluster Growth Dynamics. Langmuir, 2000, 16, 3543-3548.	1.6	109
72	N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 1915-1919.	5.2	105

#	Article	IF	CITATIONS
73	Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers. Journal of Hazardous Materials, 2022, 424, 127563.	6.5	104
74	Molybdenum carbide on hierarchical porous carbon synthesized from Cu-MoO2 as efficient electrocatalysts for electrochemical hydrogen generation. Nano Energy, 2017, 41, 749-757.	8.2	103
75	Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. Small, 2017, 13, 1701025.	5.2	103
76	Fabrication of Self-Supported Patterns of Alignedβ-FeOOH Nanowires by a Low-Temperature Solution Reaction. Chemistry - A European Journal, 2003, 9, 4991-4996.	1.7	101
77	Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. Journal of Power Sources, 2017, 343, 458-466.	4.0	99
78	Iridium-platinum alloy nanoparticles: Composition-dependent electrocatalytic activity for formic acid oxidation. Journal of Materials Chemistry, 2011, 21, 9169.	6.7	97
79	Photocatalytic activity of Ag3PO4 nanoparticle/TiO2 nanobelt heterostructures. Applied Surface Science, 2012, 258, 9805-9809.	3.1	95
80	Conducting Polymers Crosslinked with Sulfur as Cathode Materials for Highâ€Rate, Ultralongâ€Life Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 3378-3386.	3.6	95
81	Large-scale electrochemical synthesis of SnO2 nanoparticles. Journal of Materials Science, 2008, 43, 5291-5299.	1.7	94
82	Graphene oxide-supported zinc cobalt oxides as effective cathode catalysts for microbial fuel cell: High catalytic activity and inhibition of biofilm formation. Nano Energy, 2019, 57, 811-819.	8.2	94
83	Carbon aerogels with atomic dispersion of binary iron–cobalt sites as effective oxygen catalysts for flexible zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 11649-11655.	5.2	94
84	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	93
85	Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale, 2013, 5, 4986.	2.8	92
86	Enhanced Performance of Layered Titanate Nanowire-Based Supercapacitor Electrodes by Nickel Ion Exchange. ACS Applied Materials & Interfaces, 2014, 6, 4578-4586.	4.0	92
87	Nitrogen and Iron-Codoped Carbon Hollow Nanotubules as High-Performance Catalysts toward Oxygen Reduction Reaction: A Combined Experimental and Theoretical Study. Chemistry of Materials, 2017, 29, 5617-5628.	3.2	92
88	Flexible wire-like all-carbon supercapacitors based on porous core–shell carbon fibers. Journal of Materials Chemistry A, 2014, 2, 7250-7255.	5.2	91
89	Hierarchical carbon microflowers supported defect-rich Co3S4 nanoparticles: An efficient electrocatalyst for water splitting. Carbon, 2020, 160, 133-144.	5.4	90
90	Ion-Induced Rectification of Nanoparticle Quantized Capacitance Charging in Aqueous Solutions. Journal of the American Chemical Society, 2001, 123, 10607-10615.	6.6	89

#	Article	IF	CITATIONS
91	Bioreduction of Precious Metals by Microorganism: Efficient Gold@Nâ€Doped Carbon Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 8416-8420.	7.2	88
92	Enhancement of the electrocatalytic activity of Pt nanoparticles in oxygen reduction by chlorophenyl functionalization. Chemical Communications, 2012, 48, 3391.	2.2	87
93	Janus Nanoparticles: Preparation, Characterization, and Applications. Chemistry - an Asian Journal, 2014, 9, 418-430.	1.7	86
94	Manganese oxide/graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors. Electrochimica Acta, 2013, 110, 228-233.	2.6	82
95	Visible-light degradation of antibiotics catalyzed by titania/zirconia/graphitic carbon nitride ternary nanocomposites: a combined experimental and theoretical study. Applied Catalysis B: Environmental, 2022, 300, 120633.	10.8	82
96	Pyrene-Functionalized Ruthenium Nanoparticles as Effective Chemosensors for Nitroaromatic Derivatives. Analytical Chemistry, 2010, 82, 461-465.	3.2	81
97	AgAu Bimetallic Janus Nanoparticles and Their Electrocatalytic Activity for Oxygen Reduction in Alkaline Media. Langmuir, 2012, 28, 17143-17152.	1.6	81
98	Ligand-Mediated Electrocatalytic Activity of Pt Nanoparticles for Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2012, 116, 10592-10598.	1.5	80
99	Polymer-Capped Sulfur Copolymers as Lithium–Sulfur Battery Cathode: Enhanced Performance by Combined Contributions of Physical and Chemical Confinements. Journal of Physical Chemistry C, 2017, 121, 2495-2503.	1.5	79
100	Alkyne-Protected Ruthenium Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 18146-18152.	1.5	78
101	Nanoparticle Assemblies: "Rectified―Quantized Charging in Aqueous Media. Journal of the American Chemical Society, 2000, 122, 7420-7421.	6.6	76
102	Ruthenium Ion omplexed Graphitic Carbon Nitride Nanosheets Supported on Reduced Graphene Oxide as Highâ€Performance Catalysts for Electrochemical Hydrogen Evolution. ChemSusChem, 2018, 11, 130-136.	3.6	76
103	Electrocatalysts based on metal@carbon core@shell nanocomposites: AnÂoverview. Green Energy and Environment, 2018, 3, 335-351.	4.7	75
104	Flexible and porous catalyst electrodes constructed by Co nanoparticles@nitrogen-doped graphene films for highly efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15962-15968.	5.2	74
105	Graphene Quantum-Dot-Supported Platinum Nanoparticles: Defect-Mediated Electrocatalytic Activity in Oxygen Reduction. ACS Applied Materials & Interfaces, 2014, 6, 14050-14060.	4.0	73
106	Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO ₂ to formate. Journal of Materials Chemistry A, 2019, 7, 27514-27521.	5.2	73
107	Langmuirâ^'Blodgett Thin Films of Fe20Pt80Nanoparticles for the Electrocatalytic Oxidation of Formic Acid. Journal of Physical Chemistry C, 2007, 111, 13452-13459.	1.5	72
108	Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: effects of TiO2 crystalline phase. Journal of Materials Science, 2010, 45, 2696-2702.	1.7	72

#	Article	IF	CITATIONS
109	Construction of durable antibacterial and anti-mildew cotton fabric based on P(DMDAAC-AGE)/Ag/ZnO composites. Carbohydrate Polymers, 2019, 204, 161-169.	5.1	72
110	Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 9627-9636.	2.8	71
111	Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction. Nano Research, 2017, 10, 2599-2609.	5.8	69
112	A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. Journal of Materials Chemistry A, 2016, 4, 15913-15919.	5.2	68
113	Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries. Journal of Materials Chemistry A, 2019, 7, 20840-20846.	5.2	68
114	Carbene-Functionalized Ruthenium Nanoparticles. Chemistry of Materials, 2006, 18, 5253-5259.	3.2	66
115	Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions. ACS Catalysis, 2021, 11, 1179-1188.	5.5	65
116	Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2015, 3, 3315-3323.	3.2	64
117	Ruthenium Ion-Complexed Carbon Nitride Nanosheets with Peroxidase-like Activity as a Ratiometric Fluorescence Probe for the Detection of Hydrogen Peroxide and Glucose. ACS Applied Materials & Interfaces, 2019, 11, 29072-29077.	4.0	64
118	Palladium nanoparticles passivated by metal–carbon covalent linkages. Journal of Materials Chemistry, 2008, 18, 755.	6.7	63
119	Surface Functionalization of Metal Nanoparticles by Conjugated Metal–Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer. Accounts of Chemical Research, 2016, 49, 2251-2260.	7.6	63
120	PdO/TiO ₂ and Pd/TiO ₂ Heterostructured Nanobelts with Enhanced Photocatalytic Activity. Chemistry - an Asian Journal, 2014, 9, 1648-1654.	1.7	61
121	Highâ€Performance Electrocatalysts for Oxygen Reduction Based on Nitrogenâ€Doped Porous Carbon from Hydrothermal Treatment of Glucose and Dicyandiamide. ChemElectroChem, 2015, 2, 803-810.	1.7	61
122	Nickel nanoparticles partially embedded into carbon fiber cloth via metal-mediated pitting process as flexible and efficient electrodes for hydrogen evolution reactions. Carbon, 2017, 122, 710-717.	5.4	61
123	High-performance Li-Se battery cathode based on CoSe 2 -porous carbon composites. Electrochimica Acta, 2018, 264, 341-349.	2.6	61
124	Graphene-supported highly crosslinked organosulfur nanoparticles as cathode materials for high-rate, long-life lithium-sulfur battery. Carbon, 2017, 122, 106-113.	5.4	60
125	Nanoparticle-Mediated Intervalence Transfer. Journal of the American Chemical Society, 2008, 130, 12156-12162.	6.6	59
126	A double substrate "sandwich―structure for fiber surface enhanced Raman scattering detection. Applied Physics Letters, 2008, 92, .	1.5	59

#	Article	IF	CITATIONS
127	Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid. Chemical Communications, 2011, 47, 6075.	2.2	59
128	Antimicrobial Activity of Zinc Oxide–Graphene Quantum Dot Nanocomposites: Enhanced Adsorption on Bacterial Cells by Cationic Capping Polymers. ACS Sustainable Chemistry and Engineering, 2019, 7, 16264-16273.	3.2	59
129	Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets. Nanoscale, 2016, 8, 6629-6635.	2.8	58
130	4-Hydroxythiophenol-Protected Gold Nanoclusters in Aqueous Media. Langmuir, 1999, 15, 7551-7557.	1.6	57
131	Alkyne-Functionalized Ruthenium Nanoparticles: Ruthenium–Vinylidene Bonds at the Metal–Ligand Interface. Journal of the American Chemical Society, 2012, 134, 1412-1415.	6.6	57
132	Controllable synthesis of cerium zirconium oxide nanocomposites and their application for photocatalytic degradation of sulfonamides. Applied Catalysis B: Environmental, 2019, 259, 118107.	10.8	57
133	Lateral Quantized Charge Transfer Across Nanoparticle Monolayers at the Air/Water Interface. Journal of the American Chemical Society, 2004, 126, 76-77.	6.6	56
134	Titanium Nanoparticles Stabilized by Tiâ^'C Covalent Bonds. Chemistry of Materials, 2008, 20, 1248-1250.	3.2	54
135	Nitrogen Self-Doped Porous Carbon from Surplus Sludge as Metal-Free Electrocatalysts for Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2014, 6, 14911-14918.	4.0	54
136	Graphene‣upported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction. Small, 2016, 12, 1900-1908.	5.2	54
137	Volatilizable template-assisted scalable preparation of honeycomb-like porous carbons for efficient oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 10820-10827.	5.2	54
138	Palladium nanoparticles grown on β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 4932-4941.	3.8	54
139	Highly Ordered Hierarchical Pt and PtNi Nanowire Arrays for Enhanced Electrocatalytic Activity toward Methanol Oxidation. ACS Applied Materials & amp; Interfaces, 2018, 10, 9444-9450.	4.0	54
140	PdAg@Pd core-shell nanotubes: Superior catalytic performance towards electrochemical oxidation of formic acid and methanol. Journal of Power Sources, 2018, 398, 201-208.	4.0	54
141	Gold Nanoparticle Assemblies by Metal Ionâ^'Pyridine Complexation and Their Rectified Quantized Charging in Aqueous Solutions. Journal of Physical Chemistry B, 2002, 106, 1903-1908.	1.2	53
142	Dithiocarbamate-Capped Silver Nanoparticles. Journal of Physical Chemistry B, 2006, 110, 19238-19242.	1.2	53
143	UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts. Journal of Materials Chemistry, 2012, 22, 23395.	6.7	53
144	"Lewis Base-Hungry―Amorphous–Crystalline Nickel Borate–Nickel Sulfide Heterostructures by In Situ Structural Engineering as Effective Bifunctional Electrocatalysts toward Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 23896-23903.	4.0	53

#	Article	IF	CITATIONS
145	SnO2–Au hybrid nanoparticles as effective catalysts for oxygen electroreduction in alkaline media. Journal of Power Sources, 2010, 195, 412-418.	4.0	52
146	Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers. Synthetic Metals, 2015, 209, 369-376.	2.1	52
147	High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution. International Journal of Hydrogen Energy, 2020, 45, 18840-18849.	3.8	52
148	Nanocomposites based on hierarchical porous carbon fiber@vanadium nitride nanoparticles as supercapacitor electrodes. Dalton Transactions, 2018, 47, 4128-4138.	1.6	51
149	Janus nanoparticles: reaction dynamics and NOESY characterization. Journal of Nanoparticle Research, 2009, 11, 1895-1903.	0.8	50
150	Computational Study of Bridge-Assisted Intervalence Electron Transfer. Journal of Physical Chemistry A, 2010, 114, 6039-6046.	1.1	50
151	Biomass-Derived Carbon for Electrode Fabrication in Microbial Fuel Cells: A Review. Industrial & Engineering Chemistry Research, 2020, 59, 6391-6404.	1.8	50
152	Pyrene-Functionalized Ruthenium Nanoparticles: Novel Fluorescence Characteristics from Intraparticle Extended Conjugation. Journal of Physical Chemistry C, 2009, 113, 16988-16995.	1.5	49
153	Comparison of the Interfacial Activity between Homogeneous and Janus Gold Nanoparticles by Pendant Drop Tensiometry. Langmuir, 2014, 30, 1799-1804.	1.6	49
154	Impacts of interfacial charge transfer on nanoparticle electrocatalytic activity towards oxygen reduction. Physical Chemistry Chemical Physics, 2017, 19, 9336-9348.	1.3	49
155	PdAu alloyed clusters supported by carbon nanosheets asÂefficient electrocatalysts forÂoxygenÂreduction. International Journal of Hydrogen Energy, 2017, 42, 218-227.	3.8	49
156	Supported Heterostructured MoC/Mo ₂ C Nanoribbons and Nanoflowers as Highly Active Electrocatalysts for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 8458-8465.	3.2	49
157	Oxygen Reduction Catalyzed by Au–TiO ₂ Nanocomposites in Alkaline Media. ACS Applied Materials & Interfaces, 2013, 5, 13305-13311.	4.0	48
158	Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd–Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets. Catalysts, 2018, 8, 329.	1.6	48
159	Co@Pd core-shell nanoparticles embedded in nitrogen-doped porous carbon as dual functional electrocatalysts for both oxygen reduction and hydrogen evolution reactions. Journal of Colloid and Interface Science, 2018, 528, 18-26.	5.0	48
160	Langmuir monolayers of gold nanoparticles: from ohmic to rectifying charge transfer. Analytica Chimica Acta, 2003, 496, 29-37.	2.6	47
161	Ordered mesoporous carbons codoped with nitrogen and iron as effective catalysts for oxygen reduction reaction. Nanoscale, 2016, 8, 19249-19255.	2.8	47
162	Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium-sulfur batteries. Electrochimica Acta, 2018, 263, 53-59.	2.6	47

#	Article	IF	CITATIONS
163	Oxygen Electroreduction Catalyzed by Palladium Nanoparticles Supported on Nitrogen-Doped Graphene Quantum Dots: Impacts of Nitrogen Dopants. ACS Sustainable Chemistry and Engineering, 2016, 4, 6580-6589.	3.2	45
164	Good Biocompatibility and Sintering Properties of Zirconia Nanoparticles Synthesized via Vapor-phase Hydrolysis. Scientific Reports, 2016, 6, 35020.	1.6	45
165	Bioreduction of Precious Metals by Microorganism: Efficient Gold@Nâ€Doped Carbon Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2016, 128, 8556-8560.	1.6	44
166	PdCu alloy nanoparticles supported on CeO2 nanorods: Enhanced electrocatalytic activity by synergy of compressive strain, PdO and oxygen vacancy. Journal of Catalysis, 2019, 374, 101-109.	3.1	44
167	N-doped carbon-wrapped Mo C heterophase sheets for high-efficiency electrochemical hydrogen production. Chemical Engineering Journal, 2019, 358, 362-368.	6.6	44
168	Ultrafast study of electronic relaxation dynamics in Au11 nanoclusters. Chemical Physics Letters, 2004, 383, 31-34.	1.2	43
169	Hydrothermally enhanced photoluminescence of carbon nanoparticles. Scripta Materialia, 2010, 62, 883-886.	2.6	43
170	Regulated Synthesis of Mo Sheets and Their Derivative MoX Sheets (X: P, S, or C) as Efficient Electrocatalysts for Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 8041-8046.	4.0	43
171	High-performance aqueous asymmetric electrochemical capacitors based on graphene oxide/cobalt(ii)-tetrapyrazinoporphyrazine hybrids. Journal of Materials Chemistry A, 2013, 1, 2821.	5.2	42
172	Recent advances in vanadium-based nanomaterials and their composites for supercapacitors. Sustainable Energy and Fuels, 2020, 4, 4902-4933.	2.5	42
173	Atomic Dispersion and Surface Enrichment of Palladium in Nitrogen-Doped Porous Carbon Cages Lead to High-Performance Electrocatalytic Reduction of Oxygen. ACS Applied Materials & Interfaces, 2020, 12, 17641-17650.	4.0	42
174	Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone. Journal of Power Sources, 2016, 329, 104-114.	4.0	41
175	Peptide templated AuPt alloyed nanoparticles as highly efficient bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Electrochimica Acta, 2018, 260, 168-176.	2.6	41
176	Electrochemical Studies of Langmuirâ^'Blodgett Thin Films of Electroactive Nanoparticles. Langmuir, 2001, 17, 6664-6668.	1.6	40
177	Defective TiO ₂ -supported Cu nanoparticles as efficient and stable electrocatalysts for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 1224-1232.	2.8	40
178	Single electron tunneling and manipulation of nanoparticles on surfaces at room temperature. Surface Science, 2005, 589, 129-138.	0.8	39
179	Inner wall coated hollow core waveguide sensor based on double substrate surface enhanced Raman scattering. Applied Physics Letters, 2008, 93, .	1.5	39
180	Electrochemical-driven water reduction catalyzed by a water soluble cobalt(III) complex with Schiff base ligand. Electrochimica Acta, 2015, 178, 368-373.	2.6	39

#	Article	IF	CITATIONS
181	Iron Nanoparticles Encapsulated in S,N-Codoped Carbon: Sulfur Doping Enriches Surface Electron Density and Enhances Electrocatalytic Activity toward Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 12686-12695.	4.0	39
182	Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers: An electrochemical study in solution and a membrane-electrode-assembly study in fuel cells. Journal of Power Sources, 2012, 216, 67-75.	4.0	38
183	Air Cathode Catalysts of Microbial Fuel Cell by Nitrogen-Doped Carbon Aerogels. ACS Sustainable Chemistry and Engineering, 2019, 7, 3917-3924.	3.2	38
184	Fullerene-Functionalized Gold Nanoparticles:  Electrochemical and Spectroscopic Properties. Analytical Chemistry, 2004, 76, 6102-6107.	3.2	37
185	Adhesion Force Studies of Janus Nanoparticles. Langmuir, 2007, 23, 8544-8548.	1.6	37
186	Alkyneâ€Stabilized Ruthenium Nanoparticles: Manipulation of Intraparticle Charge Delocalization by Nanoparticle Charge States. Angewandte Chemie - International Edition, 2010, 49, 9496-9499.	7.2	37
187	Computational Study of Ferrocene-Based Molecular Frameworks with 2,5-Diethynylpyridine as a Chemical Bridge. Materials, 2010, 3, 2668-2683.	1.3	37
188	Alkyneâ€Protected AuPd Alloy Nanoparticles for Electrocatalytic Reduction of Oxygen. ChemElectroChem, 2015, 2, 1719-1727.	1.7	37
189	Metal–Carbon Hybrid Electrocatalysts Derived from Ionâ€Exchange Resin Containing Heavy Metals for Efficient Hydrogen Evolution Reaction. Small, 2016, 12, 2768-2774.	5.2	37
190	Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles. International Journal of Hydrogen Energy, 2016, 41, 1559-1567.	3.8	37
191	Ternary Fe3O4@C@PANi nanocomposites as high-performance supercapacitor electrode materials. Journal of Materials Science, 2018, 53, 12322-12333.	1.7	37
192	Nanocomposites Based on Ruthenium Nanoparticles Supported on Cobalt and Nitrogen-Codoped Graphene Nanosheets as Bifunctional Catalysts for Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 46912-46919.	4.0	37
193	Electronic Conductivity of Semiconductor Nanoparticle Monolayers at the Air Water Interface. Journal of Physical Chemistry B, 2003, 107, 5733-5739.	1.2	36
194	Chemical manipulations of nanoscale electron transfers. Journal of Electroanalytical Chemistry, 2004, 574, 153-165.	1.9	36
195	Controlled Assembly of Janus Nanoparticles. Langmuir, 2010, 26, 14923-14928.	1.6	36
196	Comparative study on the production of poly(3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production. Applied Microbiology and Biotechnology, 2014, 98, 3965-3974.	1.7	36
197	Highly conductive polythiophene films doped with chloroauric acid for dual-mode sensing of volatile organic amines and thiols. Sensors and Actuators B: Chemical, 2017, 243, 380-387.	4.0	36
198	Ru@Pt Core–Shell Nanoparticles: Impact of the Atomic Ordering of the Ru Metal Core on the Electrocatalytic Activity of the Pt Shell. ACS Sustainable Chemistry and Engineering, 2019, 7, 9007-9016.	3.2	36

#	Article	IF	CITATIONS
199	Enhanced electrocatalytic oxidation of formic acid by platinum deposition on ruthenium nanoparticle surfaces. Journal of Electroanalytical Chemistry, 2009, 631, 36-42.	1.9	35
200	PdRu alloy nanoparticles of solid solution in atomic scale: outperformance towards formic acid electro-oxidation in acidic medium. Electrochimica Acta, 2017, 251, 588-594.	2.6	35
201	Hierarchically Structured Co(OH) ₂ /CoPt/N-CN Air Cathodes for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4983-4994.	4.0	35
202	Bowl-like C@MoS ₂ Nanocomposites as Anode Materials for Lithium-Ion Batteries: Enhanced Stress Buffering and Charge/Mass Transfer. ACS Sustainable Chemistry and Engineering, 2020, 8, 10065-10072.	3.2	35
203	Benzoate anions-intercalated cobalt-nickel layered hydroxide nanobelts as high-performance electrode materials for aqueous hybrid supercapacitors. Journal of Colloid and Interface Science, 2021, 582, 842-851.	5.0	35
204	Sulfur codoping enables efficient oxygen electroreduction on FeCo alloy encapsulated in N-Doped carbon nanotubes. Journal of Alloys and Compounds, 2018, 741, 368-376.	2.8	34
205	PdRu alloy nanoparticles of solid solution in atomic scale: Size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol. Journal of Catalysis, 2018, 364, 183-191.	3.1	34
206	Iron, Nitrogen-Doped Carbon Aerogels for Fluorescent and Electrochemical Dual-Mode Detection of Glucose. Langmuir, 2021, 37, 11309-11315.	1.6	34
207	Electron transfer chemistry of octadecylamine-functionalized single-walled carbon nanotubes. Electrochimica Acta, 2005, 50, 3061-3067.	2.6	33
208	Direct Growth of Carbon Nanofibers to Generate a 3D Porous Platform on a Metal Contact to Enable an Oxygen Reduction Reaction. ACS Nano, 2012, 6, 10720-10726.	7.3	33
209	Bismuth titanate nanobelts through a low-temperature nanoscale solid-state reaction. Acta Materialia, 2014, 62, 258-266.	3.8	33
210	Cold core@silver semishell Janus nanoparticles prepared by interfacial etching. Nanoscale, 2016, 8, 14565-14572.	2.8	33
211	Oxygen Reduction Reaction Catalyzed by Black-Phosphorus-Supported Metal Nanoparticles: Impacts of Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 24707-24714.	4.0	33
212	Electrochemical reduction of SnO2 to Sn from the Bottom: In-Situ formation of SnO2/Sn heterostructure for highly efficient electrochemical reduction of carbon dioxide to formate. Journal of Catalysis, 2021, 399, 67-74.	3.1	33
213	CeO ₂ Modulates the Electronic States of a Palladium Onion-Like Carbon Interface into a Highly Active and Durable Electrocatalyst for Hydrogen Oxidation in Anion-Exchange-Membrane Fuel Cells. ACS Catalysis, 2022, 12, 7014-7029.	5.5	33
214	Antibacterial Activity of Nitrogen-Doped Carbon Dots Enhanced by Atomic Dispersion of Copper. Langmuir, 2020, 36, 11629-11636.	1.6	32
215	Interparticle Charge Transfer Mediated by ï€â~'ï€ Stacking of Aromatic Moieties. Journal of the American Chemical Society, 2007, 129, 10622-10623.	6.6	31
216	Ferrocene-functionalized carbon nanoparticles. Nanoscale, 2011, 3, 1984.	2.8	31

#	Article	IF	CITATIONS
217	Sulfur impregnation in polypyrrole-modified MnO ₂ nanotubes: efficient polysulfide adsorption for improved lithium–sulfur battery performance. Nanoscale, 2019, 11, 10097-10105.	2.8	31
218	N,S–Codoped hierarchical porous carbon spheres embedded with cobalt nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nanoscale, 2019, 11, 21302-21310.	2.8	31
219	Electronic conductivity of alkyne-capped ruthenium nanoparticles. Nanoscale, 2012, 4, 4183.	2.8	30
220	Bimetallic PdZn nanoparticles for oxygen reduction reaction in alkaline medium: The effects of surface structure. Journal of Catalysis, 2020, 382, 181-191.	3.1	30
221	Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2020, 450, 227659.	4.0	30
222	Coating gold nanoparticles with peptide molecules via a peptide elongation approach. Colloids and Surfaces B: Biointerfaces, 2003, 28, 199-207.	2.5	29
223	Alkyne-functionalized palladium nanoparticles: Synthesis, characterization, and electrocatalytic activity in ethylene glycol oxidation. Electrochimica Acta, 2013, 94, 98-103.	2.6	29
224	Platinum nanoparticles functionalized with acetylene derivatives: Electronic conductivity and electrocatalytic activity in oxygen reduction. Journal of Electroanalytical Chemistry, 2013, 688, 143-150.	1.9	29
225	One-pot synthesis of graphene/carbon nanospheres/graphene sandwich supported Pt3Ni nanoparticles with enhanced electrocatalytic activity in methanol oxidation. International Journal of Hydrogen Energy, 2015, 40, 5106-5114.	3.8	29
226	Ultrasmall Palladium Nanoclusters Encapsulated in Porous Carbon Nanosheets for Oxygen Electroreduction in Alkaline Media. ChemElectroChem, 2017, 4, 1349-1355.	1.7	29
227	Cobalt oxides nanoparticles supported on nitrogen-doped carbon nanotubes as high-efficiency cathode catalysts for microbial fuel cells. Inorganic Chemistry Communication, 2019, 105, 69-75.	1.8	29
228	Nanowrinkled Carbon Aerogels Embedded with FeNx Sites as Effective Oxygen Electrodes for Rechargeable Zinc-Air Battery. Research, 2019, 2019, 6813585.	2.8	29
229	Dithiocarbamate-protected ruthenium nanoparticles: Synthesis, spectroscopy, electrochemistry and STM studies. Electrochimica Acta, 2007, 53, 1150-1156.	2.6	28
230	Butylphenyl-functionalized Pt nanoparticles as CO-resistant electrocatalysts for formic acid oxidation. Physical Chemistry Chemical Physics, 2012, 14, 1412-1417.	1.3	28
231	Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media. Journal of Power Sources, 2014, 268, 469-475.	4.0	28
232	Hydrophobic, flexible electromagnetic interference shielding films derived from hydrolysate of waste leather scraps. Journal of Colloid and Interface Science, 2022, 613, 396-405.	5.0	28
233	Nitroxide-mediated polymerization to form symmetrical ABA triblock copolymers from a bidirectional alkoxyamine initiator. Polymer, 2007, 48, 2564-2571.	1.8	27
234	Atomically dispersed ruthenium in carbon aerogels as effective catalysts for pH-universal hydrogen evolution reaction. Chemical Engineering Journal, 2022, 442, 136337.	6.6	27

#	Article	IF	CITATIONS
235	Photoluminescence and conductivity studies of anthracene-functionalized ruthenium nanoparticles. Nanoscale, 2011, 3, 2294.	2.8	26
236	Enhanced antimicrobial activity with faceted silver nanostructures. Journal of Materials Science, 2015, 50, 2849-2858.	1.7	26
237	Organic functionalization of metal catalysts: Enhanced activity towards electroreduction of carbon dioxide. Current Opinion in Electrochemistry, 2019, 13, 40-46.	2.5	26
238	Discrete charge transfer in nanoparticle solid films. Journal of Materials Chemistry, 2007, 17, 4115.	6.7	25
239	Solid-state electronic conductivity of ruthenium nanoparticles passivated by metal–carbon covalent bonds. Chemical Physics Letters, 2008, 465, 115-119.	1.2	25
240	Intervalence transfer of ferrocene moieties adsorbed on electrode surfaces by a conjugated linkage. Chemical Physics Letters, 2009, 471, 283-285.	1.2	25
241	Portable fiber sensors based on surface-enhanced Raman scattering. Review of Scientific Instruments, 2010, 81, 123103.	0.6	25
242	Physico-Chemical Characteristics of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 81-152.	0.7	25
243	Intervalence Charge Transfer of Ruthenium–Nitrogen Moieties Embedded within Nitrogen-Doped Graphene Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 13303-13309.	1.5	25
244	Nanocomposites CoPt-x/Diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: Diatomite boosted the catalytic activity and durability. Electrochimica Acta, 2018, 284, 119-127.	2.6	25
245	Cobalt single atom sites in carbon aerogels for ultrasensitive enzyme-free electrochemical detection of glucose. Journal of Electroanalytical Chemistry, 2022, 906, 116024.	1.9	25
246	Electrochemical Studies of Water-Soluble Palladium Nanoparticles. Journal of Cluster Science, 2000, 11, 405-422.	1.7	24
247	A Hydrogenâ€Bonded Organicâ€Frameworkâ€Derived Mesoporous Nâ€Doped Carbon for Efficient Electroreduction of Oxygen. ChemElectroChem, 2016, 3, 1116-1123.	1.7	24
248	Cellulose nanofiber/cationic conjugated polymer hybrid aerogel sensor for nitroaromatic vapors detection. Journal of Materials Science, 2017, 52, 8455-8464.	1.7	24
249	Porous molybdenum carbide microspheres as efficient binder-free electrocatalysts for suspended hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 6448-6454.	3.8	24
250	Ternary PtVCo dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2018, 5, 2425-2431.	3.0	23
251	Recent Progress of Singleâ€∎tom Catalysts in the Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. Electroanalysis, 2020, 32, 2591-2602.	1.5	23
252	Highly-stable tin-based perovskite nanocrystals produced by passivation and coating of gelatin. Journal of Hazardous Materials, 2021, 403, 123967.	6.5	23

#	Article	IF	CITATIONS
253	Electrochemical Quartz Crystal Microbalance Studies of the Rectified Quantized Charging of Gold Nanoparticle Multilayers. Langmuir, 2007, 23, 936-941.	1.6	22
254	Nitrene-functionalized ruthenium nanoparticles. Journal of Materials Chemistry, 2012, 22, 19250.	6.7	22
255	Impacts of oxygen vacancies on the electrocatalytic activity of AuTiO2 nanocomposites towards oxygen reduction. International Journal of Hydrogen Energy, 2016, 41, 18005-18014.	3.8	22
256	Alkyne-Functionalized Ruthenium Nanoparticles: Impact of Metal–Ligand Interfacial Bonding Interactions on the Selective Hydrogenation of Styrene. ACS Catalysis, 2019, 9, 98-104.	5.5	22
257	Silver nanocubes monolayers as a SERS substrate for quantitative analysis. Chinese Chemical Letters, 2021, 32, 1497-1501.	4.8	22
258	Graphene-Based Composites for Supercapacitor Electrodes. Science of Advanced Materials, 2015, 7, 1916-1944.	0.1	22
259	Electrochemical and Spectroscopic Studies of Nitrophenyl Moieties Immobilized on Gold Nanoparticles. Langmuir, 2000, 16, 2014-2018.	1.6	21
260	Rectifying Nanoscale Electron Transfer by Viologen Moieties and Hydrophobic Electrolyte Ions. Langmuir, 2002, 18, 8942-8948.	1.6	21
261	Photoconductivity of Langmuirâ ^{~'} Blodgett Monolayers of Silicon Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 13292-13298.	1.5	21
262	TiO ₂ nanotubes/ZnO/CdS ternary nanocomposites: preparation, characterization and photocatalysis. Journal of the Chinese Advanced Materials Society, 2013, 1, 188-199.	0.7	21
263	Super long-life supercapacitor electrode materials based on hierarchical porous hollow carbon microcapsules. RSC Advances, 2015, 5, 87077-87083.	1.7	21
264	Rapid preparation of carbonâ€supported ruthenium nanoparticles by magnetic induction heating for efficient hydrogen evolution reaction in both acidic and alkaline media. SusMat, 2022, 2, 335-346.	7.8	21
265	Magnetoelectrochemistry of Nitrothiophenolate-Functionalized Gold Nanoparticles. Langmuir, 2003, 19, 9446-9449.	1.6	20
266	Charge Transport at the Metal-Organic Interface. Annual Review of Physical Chemistry, 2013, 64, 221-245.	4.8	20
267	Multifunctional grapheneâ€based nanostructures for efficient electrocatalytic reduction of oxygen. Journal of Chemical Technology and Biotechnology, 2015, 90, 2132-2151.	1.6	20
268	Ethanol Electrooxidation Catalyzed by Tungsten Core@Palladium Shell Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 30968-30976.	4.0	20
269	Ion-Induced Interfacial Dynamics of Phospholipid Monolayers. Analytical Chemistry, 2000, 72, 2949-2956.	3.2	19
270	Photo-Gated Charge Transfer of Organized Assemblies of CdSe Quantum Dots. Langmuir, 2006, 22, 787-793.	1.6	19

#	Article	IF	CITATIONS
271	Enhanced Stability of Janus Nanoparticles by Covalent Cross-Linking of Surface Ligands. Langmuir, 2011, 27, 14581-14588.	1.6	19
272	Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes. Langmuir, 2016, 32, 4297-4304.	1.6	19
273	Morphology Control and Electro catalytic Activity towards Oxygen Reduction of Peptideâ€∓emplated Metal Nanomaterials: A Comparison between Au and Pt. ChemistrySelect, 2016, 1, 6044-6052.	0.7	19
274	Peptideâ€FlgA3â€Based Gold Palladium Bimetallic Nanoparticles That Catalyze the Oxygen Reduction Reaction in Alkaline Solution. ChemCatChem, 2017, 9, 2980-2987.	1.8	19
275	Oxygen reduction reaction and hydrogen evolution reaction catalyzed by carbon-supported molybdenum-coated palladium nanocubes. International Journal of Hydrogen Energy, 2018, 43, 17132-17141.	3.8	19
276	Layered Electrodes Based on 3D Hierarchical Porous Carbon and Conducting Polymers for Highâ€Performance Lithium‧ulfur Batteries. Small Methods, 2019, 3, 1900028.	4.6	19
277	A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate. Science China Chemistry, 2020, 63, 1777-1784.	4.2	19
278	Self-assembled multilayers of gold nanoparticles: nitrate-induced rectification of quantized capacitance charging and effects of alkaline (earth) ions in aqueous solutions. Physical Chemistry Chemical Physics, 2005, 7, 3375.	1.3	18
279	Charge transport at the metal oxide and organic interface. Nanoscale, 2012, 4, 7301.	2.8	18
280	Peptide capped Pd nanoparticles for oxygen electroreduction: Strong surface effects. Journal of Alloys and Compounds, 2017, 702, 146-152.	2.8	18
281	Platinum nanoparticles encapsulated in nitrogen-doped graphene quantum dots: Enhanced electrocatalytic reduction of oxygen by nitrogen dopants. International Journal of Hydrogen Energy, 2017, 42, 29192-29200.	3.8	18
282	Point of Anchor: Impacts on Interfacial Charge Transfer of Metal Oxide Nanoparticles. Journal of the American Chemical Society, 2018, 140, 15290-15299.	6.6	18
283	Nitrogenâ€Doped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem, 2020, 12, 3230-3239.	1.8	18
284	Cobalt-Doped Zinc Oxide Nanoparticle–MoS ₂ Nanosheet Composites as Broad-Spectrum Bactericidal Agents. ACS Applied Nano Materials, 2021, 4, 4361-4370.	2.4	18
285	Platinum-complexed phosphorous-doped carbon nitride for electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 5962-5970.	5.2	18
286	Oxygen Reduction Reaction Catalyzed by Carbon-Supported Platinum Few-Atom Clusters: Significant Enhancement by Doping of Atomic Cobalt. Research, 2020, 2020, 9167829.	2.8	18
287	Micrometre-sized In2S3half-shells by a new dynamic soft template route: properties and applications. Nanotechnology, 2006, 17, 320-324.	1.3	17
288	Polyaniline:poly(sodium 4-styrenesulfonate)-stabilized gold nanoparticles as efficient, versatile catalysts. Nanoscale, 2014, 6, 5223-5229.	2.8	17

#	Article	IF	CITATIONS
289	One step hydrothermal synthesis of CeO ₂ –ZrO ₂ nanocomposites and investigation of the morphological evolution. RSC Advances, 2015, 5, 89976-89984.	1.7	17
290	Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds. ACS Applied Materials & Interfaces, 2018, 10, 12992-13001.	4.0	17
291	Antimicrobial activity of graphene oxide quantum dots: impacts of chemical reduction. Nanoscale Advances, 2020, 2, 1074-1083.	2.2	17
292	Scanning tunneling spectroscopy of gold nanoparticles: Influences of volatile organic vapors and particle core dimensions. Chemical Physics Letters, 2009, 468, 222-226.	1.2	16
293	Intraparticle Charge Delocalization of Carbene-Functionalized Ruthenium Nanoparticles Manipulated by Selective Ion Binding. Langmuir, 2011, 27, 12636-12641.	1.6	16
294	Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates. Physical Chemistry Chemical Physics, 2014, 16, 18736-18742.	1.3	16
295	Peptide A4 based AuAg alloyed nanoparticle networks for electrocatalytic reduction of oxygen. International Journal of Hydrogen Energy, 2017, 42, 11295-11303.	3.8	16
296	Silicene Quantum Dots: Synthesis, Spectroscopy, and Electrochemical Studies. Langmuir, 2018, 34, 2834-2840.	1.6	16
297	Phenol-degrading sludge as a promising precursor for a capacitive carbon material: Disclosing key factors for the nanostructure and high capacitance. Carbon, 2018, 134, 53-61.	5.4	16
298	Metal–nitrogen coordination moieties in carbon for effective electrocatalytic reduction of oxygen. Current Opinion in Electrochemistry, 2020, 21, 46-54.	2.5	16
299	Selfâ€Catalyzed Rechargeable Lithiumâ€Air Battery by in situ Metal Ion Doping of Discharge Products: A Combined Theoretical and Experimental Study. Energy and Environmental Materials, 2023, 6, .	7.3	16
300	Electrode potential induced reorientation of a phospholipid monolayer on a mercury electrode surface. Langmuir, 1994, 10, 3343-3349.	1.6	15
301	Electric-Field-Induced Transitions of Amphiphilic Layers on Mercury Electrodes. Langmuir, 1995, 11, 4554-4563.	1.6	15
302	Combining a Solution-Phase Derived Library with In-Situ Cellular Bioassay: Prompt Screening of Amide-Forming Minilibraries Using MTT Assay. Chemical and Pharmaceutical Bulletin, 2009, 57, 714-718.	0.6	15
303	Janus Nanoparticles as Versatile Phase-Transfer Reagents. Langmuir, 2014, 30, 6389-6397.	1.6	15
304	Ordered mesoporous carbons-supported gold nanoparticles as highly efficient electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 103421-103427.	1.7	15
305	Low-dimensional heteroatom-doped carbon nanomaterials prepared with thermally removable templates for the electrocatalytic reduction of oxygen. Materials Today Chemistry, 2019, 11, 253-268.	1.7	15
306	Platinum Nanoparticles Functionalized with Ethynylphenylboronic Acid Derivatives: Selective Manipulation of Nanoparticle Photoluminescence by Fluoride Ions. Langmuir, 2014, 30, 5224-5229.	1.6	14

#	Article	IF	CITATIONS
307	Oxygen electroreduction promoted by quasi oxygen vacancies in metal oxide nanoparticles prepared by photoinduced chlorine doping. Chemical Communications, 2015, 51, 10620-10623.	2.2	14
308	Identification of the formation of metal–vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling. Chemical Communications, 2016, 52, 11631-11633.	2.2	14
309	Trifunctional Electrocatalysts: Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte (Small 33/2017). Small, 2017, 13, .	5.2	14
310	Au@PdAg core–shell nanotubes as advanced electrocatalysts for methanol electrooxidation in alkaline media. RSC Advances, 2019, 9, 931-939.	1.7	14
311	Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au ₁₄₄ molecules. Nanoscale, 2020, 12, 2980-2986.	2.8	14
312	Recent Progress of the Design and Engineering of Bismuth Oxyhalides for Photocatalytic Nitrogen Fixation. Advanced Energy and Sustainability Research, 2021, 2, 2000097.	2.8	14
313	Cathode strategies to improve the performance of zincâ€ion batteries. Electrochemical Science Advances, 2022, 2, e2100090.	1.2	14
314	High-Energy-Density Asymmetric Supercapacitor Based on Free-Standing Ti ₃ C ₂ T <i>_X</i> @NiO-Reduced Graphene Oxide Heterostructured Anode and Defective Reduced Graphene Oxide Hydrogel Cathode. ACS Applied Materials & Interfaces, 2022, 14, 19534-19546.	4.0	14
315	Enhancement of selective determination of the perfect match and mismatch of single nucleobases with a biosensing electrode based on surface-coarsened anatase TiO2 nanobelts. Journal of Materials Chemistry, 2011, 21, 10633.	6.7	13
316	Nano-p–n junction heterostructure TiO2 nanobelts for the electrochemical detection of anticancer drug and biointeractions with cancer cells. Journal of Materials Chemistry B, 2013, 1, 2072.	2.9	13
317	Styrene oxidation catalyzed by Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl nanoclusters: Impacts of capping ligands, particle size and charge state. Applied Catalysis A: General, 2018, 557, 1-6.	2.2	13
318	Electrochemical sensing of pancreatic cancer miR-1290 based on yeast-templated mesoporous TiO2 modified electrodes. Analytica Chimica Acta, 2020, 1105, 82-86.	2.6	13
319	The reactivity study of peptide A3-capped gold and silver nanoparticles with heavy metal ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 210, 37-42.	1.7	12
320	Nanoparticleâ€Mediated Intervalence Charge Transfer: Coreâ€Size Effects. Angewandte Chemie - International Edition, 2016, 55, 1455-1459.	7.2	12
321	Au/TiO ₂ nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing. Nanotechnology, 2016, 27, 095603.	1.3	12
322	A simple strategy to improve the interfacial activity of true Janus gold nanoparticles: a shorter hydrophilic capping ligand. Soft Matter, 2016, 12, 31-34.	1.2	12
323	Platinum Oxide Nanoparticles for Electrochemical Hydrogen Evolution: Influence of Platinum Valence State. Chemistry - A European Journal, 2019, 26, 4136.	1.7	12
324	Mesoporous, nitrogen-doped, graphitized carbon nanosheets embedded with cobalt nanoparticles for efficient oxygen electroreduction. Journal of Materials Science, 2019, 54, 4168-4179.	1.7	12

#	Article	IF	CITATIONS
325	Integrating ZnCo ₂ O ₄ submicro/nanospheres with Co _x Se _y nanosheets for the oxygen evolution reaction and zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 2184-2191.	2.5	12
326	Layered Assembly of Silver Nanocubes/Polyelectrolyte/Gold Film as an Efficient Substrate for Surface-Enhanced Raman Scattering. ACS Applied Nano Materials, 2020, 3, 1934-1941.	2.4	12
327	Boosting oxygen evolution activity of nickel iron hydroxide by iron hydroxide colloidal particles. Journal of Colloid and Interface Science, 2022, 606, 518-525.	5.0	12
328	Enzymatic Activity of a Phospholipase A2:  An Electrochemical Approach. Langmuir, 1997, 13, 5969-5973.	1.6	11
329	"Size-Independent―Single-Electron Tunneling. Journal of Physical Chemistry Letters, 2015, 6, 4986-4990.	2.1	11
330	Self-Assembly and Chemical Reactivity of Alkenes on Platinum Nanoparticles. Langmuir, 2015, 31, 522-528.	1.6	11
331	Facile Synthesis of Fe/N/Sâ€Doped Carbon Tubes as Highâ€Performance Cathode and Anode for Microbial Fuel Cells. ChemCatChem, 2019, 11, 6070-6077.	1.8	11
332	Recent advances and perspectives of two-dimensional Ti-based electrodes for electrochemical energy storage. Sustainable Energy and Fuels, 2021, 5, 5061-5113.	2.5	11
333	Improving the Electrochemical Properties of Carbon Paper as Cathodes for Microfluidic Fuel Cells by the Electrochemical Activation in Different Solutions. ACS Omega, 2021, 6, 19153-19161.	1.6	11
334	Co9S8 nanoparticles embedded in nitrogen, sulfur codoped porous carbon nanosheets for efficient oxygen/hydrogen electrocatalysis. Electrochimica Acta, 2021, 384, 138299.	2.6	11
335	Electrocatalytic Activity of Organically Functionalized Silver Nanoparticles in Oxygen Reduction. Science of Advanced Materials, 2013, 5, 1727-1736.	0.1	11
336	Trimetallic Ag@AuPt Neapolitan nanoparticles. Nanoscale, 2013, 5, 7284.	2.8	10
337	Photo-Gated Intervalence Charge Transfer of Ethynylferrocene Functionalized Titanium Dioxide Nanoparticles. Electrochimica Acta, 2016, 211, 704-710.	2.6	10
338	Plasmonic circular dichroism of vesicle-like nanostructures by the template-less self-assembly of achiral Janus nanoparticles. Nanoscale, 2018, 10, 14586-14593.	2.8	10
339	Defective Fe ₃ O _{4â€} <i>_x</i> Fewâ€Atom Clusters Anchored on Nitrogenâ€Doped Carbon as Efficient Oxygen Reduction Electrocatalysts for Highâ€Performance Zinc–Air Batteries. Small Methods, 2022, 6, .	4.6	10
340	Synthesis of 5-radioiodoarabinosyl uridine analog for probing HSV-1 thymidine kinase gene: an unexpected chelating effect. Nuclear Medicine and Biology, 2006, 33, 367-370.	0.3	9
341	Manipulation of Intraparticle Charge Delocalization by Selective Complexation of Transition-Metal Ions with Histidine Moieties. Analytical Chemistry, 2012, 84, 2025-2030.	3.2	9
342	Nano-p–n junction heterostructures enhanced TiO2 nanobelts biosensing electrode. Journal of Solid State Electrochemistry, 2014, 18, 2693-2699.	1.2	9

#	Article	IF	CITATIONS
343	Ironâ€Catalyzed Vinylic Câ^'H Alkylation with Alkyl Peroxides. Chemistry - an Asian Journal, 2018, 13, 2522-2528.	1.7	9
344	Graphene Oxide Quantum Dotâ€Based Functional Nanomaterials for Effective Antimicrobial Applications. Chemical Record, 2020, 20, 1505-1515.	2.9	9
345	Vertically Oriented Graphene Nanosheets for Electrochemical Energy Storage. ChemElectroChem, 2021, 8, 783-797.	1.7	9
346	Ethanol Oxidation Reaction Catalyzed by Palladium Nanoparticles Supported on Hydrogenâ€īreated TiO 2 Nanobelts: Impact of Oxygen Vacancies. ChemElectroChem, 2017, 4, 2211-2217.	1.7	9
347	Ruthenium Nanoparticles Stabilized by the Self-Assembly of Acetylene, Carboxylate, and Thiol Derivatives. Science of Advanced Materials, 2014, 6, 1060-1067.	0.1	9
348	High-Performance Supercapacitors Based on Nitrogen-Doped Porous Carbon from Surplus Sludge. Science of Advanced Materials, 2015, 7, 571-578.	0.1	9
349	Encapsulation of Pb-Free CsSnCl ₃ Perovskite Nanocrystals with Bone Gelatin: Enhanced Stability and Application in Fe ³⁺ Sensing. Inorganic Chemistry, 2022, 61, 6547-6554.	1.9	9
350	Shape and structural effects of R5-templated Pd nanomaterials as potent catalyst for oxygen electroreduction in alkaline media. Journal of Materials Science, 2017, 52, 8016-8026.	1.7	8
351	Cage Breaking of C ₆₀ Into Photoluminescent Graphene Oxide Quantum Dots: An Efficient Peroxidase Mimic. Physica Status Solidi (B): Basic Research, 2018, 255, 1700535.	0.7	8
352	Reduced graphene oxide modified activated carbon for improving power generation of air-cathode microbial fuel cells. Journal of Materials Research, 2018, 33, 1279-1287.	1.2	8
353	Photodynamic Activity of Graphene Oxide/Polyaniline/Manganese Oxide Ternary Composites toward Both Gram-Positive and Gram-Negative Bacteria. ACS Applied Bio Materials, 2021, 4, 7025-7033.	2.3	8
354	Co/Co ₂ P Nanoparticles Encapsulated within Hierarchically Porous Nitrogen, Phosphorus, Sulfur Coâ€doped Carbon as Bifunctional Electrocatalysts for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 4286-4295.	1.7	8
355	Electrocatalytic generation of reactive species and implications in microbial inactivation. Chinese Journal of Catalysis, 2022, 43, 1399-1416.	6.9	8
356	Theoryâ€Guided Regulation of FeN ₄ Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angewandte Chemie, 0, , .	1.6	8
357	Chemical Reactivity of Naphthalenecarboxylate-Protected Ruthenium Nanoparticles: Intraparticle Charge Delocalization Derived from Interfacial Decarboxylation. Journal of Physical Chemistry C, 2015, 119, 15449-15454.	1.5	7
358	In situ preparation of multi-wall carbon nanotubes/Au composites for oxygen electroreduction. RSC Advances, 2016, 6, 91209-91215.	1.7	7
359	Effects of para-substituents of styrene derivatives on their chemical reactivity on platinum nanoparticle surfaces. Nanoscale, 2016, 8, 12013-12021.	2.8	7
360	Chemical Functionalization of Graphene Quantum Dots. Science of Advanced Materials, 2015, 7, 1990-2010.	0.1	7

#	Article	IF	CITATIONS
361	High-Performance Capacitors Based on MoS ₂ Nanosheets Supported on Carbon Fibers. Science of Advanced Materials, 2015, 7, 2336-2342.	0.1	7
362	Selective hydrogenation of 4-nitrostyrene to 4-nitroethylbenzene catalyzed by Pd@Ru core–shell nanocubes. Rare Metals, 2022, 41, 1189-1194.	3.6	7
363	Ultrafast Preparation of Nonequilibrium FeNi Spinels by Magnetic Induction Heating for Unprecedented Oxygen Evolution Electrocatalysis. Research, 2022, 2022, .	2.8	7
364	Adsorption Dynamics of a Phospholipase A2 onto a Mercury Electrode Surface. The Journal of Physical Chemistry, 1995, 99, 17235-17243.	2.9	6
365	Reactions of Phospholipase A2at a Mercury Electrode Surface. Journal of Physical Chemistry B, 1997, 101, 167-174.	1.2	6
366	Synthesis of a ferrocene-functionalized unsymmetrical benzo[b]thienyl-thienylethene photoswitch with a cyclopentene core. Tetrahedron Letters, 2013, 54, 1482-1485.	0.7	6
367	Single Atom Catalysts: Carbon‣upported Single Atom Catalysts for Electrochemical Energy Conversion and Storage(Adv. Mater. 48/2018). Advanced Materials, 2018, 30, 1870370.	11.1	6
368	Electrochemical voltammetric behaviors of synthetic dengue virus RNAs at ITO sensing electrode. Journal of Electroanalytical Chemistry, 2019, 851, 113463.	1.9	6
369	Snâ€doped CeO 2 Nanorods as Highâ€Performance Electrocatalysts for CO 2 Reduction to Formate. ChemElectroChem, 2021, 8, 2680-2685.	1.7	6
370	Recent Progress in Nanoscale Morphology Control for High Performance Polymer Solar Cells. Science of Advanced Materials, 2015, 7, 2021-2036.	0.1	6
371	Temperature-modulated scanning tunneling spectroscopy of gold nanoparticle dropcast films. Solid State Communications, 2007, 144, 124-127.	0.9	5
372	Comparison of Bioactivities of 5-Fluoro, 5-Iodo, 5-Iodovinyl, and 5-Fluorovinyl Arabinosyl Uridines against SR-39 TK-Transfected Murine Prostate Cancer Cells. Chemical and Pharmaceutical Bulletin, 2008, 56, 109-111.	0.6	5
373	Single electron transfer in thermally annealed nanoparticle dropcast thick films. Applied Physics Letters, 2009, 94, 042113.	1.5	5
374	Chemical analysis of surface oxygenated moieties of fluorescent carbon nanoparticles. Nanoscale, 2012, 4, 1010.	2.8	5
375	Intraparticle donor–acceptor dyads prepared using conjugated metal–ligand linkages. Physical Chemistry Chemical Physics, 2013, 15, 17647.	1.3	5
376	Nitrene-functionalized ruthenium nanoparticles: Selective manipulation of nanoparticle electronic conductivity by vinyl derivatives. Sensors and Actuators B: Chemical, 2014, 194, 319-324.	4.0	5
377	Health Risk Assessment for Local Residents from the South China Sea Based on Mercury Concentrations in Marine Fish. Bulletin of Environmental Contamination and Toxicology, 2018, 101, 398-402.	1.3	5
378	Rectified quantized charging of gold nanoparticle self-assembled monolayers by arenedithiol linkages. , 2002, , .		4

2

#	Article	IF	CITATIONS
379	Ligand effects on the electrochemical and spectroscopic behaviors of methano[60]fullerene derivatives. Chemical Communications, 2004, , 1118.	2.2	4
380	Synthesis of 5â€Radioiodoarabinosyl Uridine Analog for Probing the HSVâ€1 Thymidine Kinase Gene. Journal of the Chinese Chemical Society, 2007, 54, 563-568.	0.8	4
381	Intervalence Charge Transfer Mediated by Silicon Nanoparticles. ChemElectroChem, 2016, 3, 1219-1224.	1.7	4
382	Isonitrile-functionalized ruthenium nanoparticles: intraparticle charge delocalization through Ru=C=N interfacial bonds. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	4
383	Intraparticle charge delocalization through conjugated metal-ligand interfacial bonds: Effects of metal d electrons. Chinese Journal of Chemical Physics, 2018, 31, 433-438.	0.6	4
384	Organized assembling of poly(ethylene glycol)-functionalized Janus nanoparticles induced by select alkali metal ions. Inorganic Chemistry Communication, 2019, 110, 107586.	1.8	4
385	Janus Nanoparticle Emulsions as Chiral Nanoreactors for Enantiomerically Selective Ligand Exchange. Particle and Particle Systems Characterization, 2019, 36, 1800564.	1.2	4
386	Recent advance in fiber SERS sensors. Proceedings of SPIE, 2008, , .	0.8	3
387	Two-Dimensional Photocatalysts: Properties, Synthesis, and Applications. Energy and Environment Focus, 2014, 3, 330-338.	0.3	3
388	Nitrile-functionalized ruthenium nanoparticles: charge delocalization through RuÂâ^'ÂNÂ≡ÂC interface. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
389	Ruthenium Ion-Complexed Graphitic Carbon Nitride Nanosheets Supported on Reduced Graphene Oxide as High-Performance Catalysts for Electrochemical Hydrogen Evolution. ChemSusChem, 2018, 11, 4-4.	3.6	3
390	Nanoscale Chirality. Particle and Particle Systems Characterization, 2019, 36, 1900129.	1.2	3
391	Structural Engineering of Semiconductor Nanoparticles by Conjugated Interfacial Bonds. Chemical Record, 2020, 20, 41-50.	2.9	3
392	Nitrogen and iron codoped porous carbon polyhedra for effectively confining polysulfides and efficiently catalyzing their conversion in lithium–sulfur batteries. Sustainable Energy and Fuels, 2020, 4, 5215-5222.	2.5	3
393	Iron-Catalyzed Decarboxylative Heck-Type Alkylation of Conjugate 1,3-Dienes. Chinese Journal of Organic Chemistry, 2021, 41, 2707.	0.6	3
394	Light-induced further agglomeration of metal particles. , 2006, , .		2
395	An Improved Synthesis of Ceramide for Constructing αâ€Galactosyl Ceramide Analogs. Journal of the Chinese Chemical Society, 2007, 54, 1375-1378.	0.8	2

#	Article	IF	CITATIONS
397	COMPUTATIONAL STUDY OF BRIDGE-MEDIATED INTERVALENCE ELECTRON TRANSFER II: COUPLINGS IN DIFFERENT METALLOCENE COMPLEXES. Journal of Theoretical and Computational Chemistry, 2012, 11, 1341-1356.	1.8	2
398	Nanoparticleâ€Mediated Intervalence Charge Transfer: Coreâ€6ize Effects. Angewandte Chemie, 2016, 128, 1477-1481.	1.6	2
399	Efficient reduction of nitric oxide using zirconium phosphide powders synthesized by elemental combination method. Scientific Reports, 2017, 7, 13044.	1.6	2
400	Surfaces enhanced with film-coupled silver nanopolyhedrons for optical transmittance. RSC Advances, 2017, 7, 39299-39305.	1.7	2
401	Ruthenium nanoparticles cofunctionalized with acetylene derivatives of coumarin and perylene: dyad-like intraparticle charge transfer. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	2
402	MoX ₂ (X = O, S) Hierarchical Nanosheets Confined in Carbon Frameworks for Enhanced Lithium-Ion Storage. ACS Applied Nano Materials, 2021, 4, 4615-4622.	2.4	2
403	Nitrogen-Doped Carbon Flowers with Fe and Ni Dual Metal Centers for Effective Electroreduction of Oxygen. Inorganics, 2022, 10, 36.	1.2	2
404	Corrigendum to "Electron transfer chemistry of octadecylamine-functionalized single-walled carbon nanotubes―[Electrochim. Acta 50 (2005) 3061–3067]. Electrochimica Acta, 2008, 53, 4936.	2.6	1
405	GeSn waveguide structures for efficient light detection and emission. , 2015, , .		1
406	Covalent Crosslinking of Graphene Quantum Dots by McMurry Deoxygenation Coupling. Chemistry - an Asian Journal, 2017, 12, 973-977.	1.7	1
407	Porous Counter Electrode for Dye-Sensitized Solar Cell by Simple Hydrothermal Method. Polymer Science - Series B, 2019, 61, 846-855.	0.3	1
408	Langmuir–Blodgett Thin Films of Gold Nanoparticle Molecules. , 2005, , 577-600.		1
409	Oxygen reduction reaction catalyzed by carbon composites with ruthenium-doped iron oxide nanoparticles. Materials Advances, 2022, 3, 4556-4565.	2.6	1
410	Fiber surface enhanced raman scattering (SERS) sensors based on a double substrate "sandwich" structure. , 2008, , .		0
411	Inner wall coated hollow core waveguide SERS probe. Proceedings of SPIE, 2009, , .	0.8	0
412	Structural manipulation of the photocatalytic activity of TiO2 nanotube arrays. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2014, 228, 166-173.	0.1	0
413	Enhanced Electrocatalytic Activity of Nanoparticle Catalysts in Oxygen Reduction by Interfacial Engineering. Nanostructure Science and Technology, 2016, , 281-307.	0.1	0
414	Silver–Copper Hollow Nanoshells as Phaseâ€Transfer Reagents and Catalysts in the Reduction of 4â€Nitroaniline. Particle and Particle Systems Characterization, 2017, 34, 1600358.	1.2	0

#	ARTICLE	IF	CITATIONS
415	One-pot Synthesis of Octyne-Ruthenium on Carbon Nanoparticles. MATEC Web of Conferences, 2017, 109, 03005.	0.1	0
416	Atom economy and green elimination of nitric oxide using ZrN powders. Royal Society Open Science, 2018, 5, 171516.	1.1	0
417	Lithiumâ€Sulfur Batteries: Layered Electrodes Based on 3D Hierarchical Porous Carbon and Conducting Polymers for Highâ€Performance Lithiumâ€Sulfur Batteries (Small Methods 5/2019). Small Methods, 2019, 3, 1970015.	4.6	0
418	CoFe-based electrocatalysts for oxygen evolution and reduction reaction. , 2020, , 265-293.		0
419	(Invited) Chemical Sensing Based on Metal-Carbon Nanocomposites. ECS Meeting Abstracts, 2021, MA2021-01, 1675-1675.	0.0	0
420	Portable Fiber Sensors Based on Surface-enhanced Raman Scattering (SERS). , 2010, , .		0
421	Interfacial Activity of AuC6 Nanoparticles Using the Pendant Drop Technique. Journal of Colloid Science and Biotechnology, 2014, 3, 184-187.	0.2	0
422	Characterization of Magnesium Oxide Nanosheets Prepared by Electrical Wire Explosion Process. Energy and Environment Focus, 2016, 5, 229-233.	0.3	0
423	Magneto-Chiral Detection of Reactive Oxygen Species. , 2022, , 100003.		0