
Theodore S Jardetzky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4150189/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Science Immunology, 2020, 5, .	11.9	404
2	Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature, 2006, 439, 38-44.	27.8	374
3	Fusing structure and function: a structural view of the herpesvirus entry machinery. Nature Reviews Microbiology, 2011, 9, 369-381.	28.6	372
4	Structural Basis for Paramyxovirus-Mediated Membrane Fusion. Molecular Cell, 1999, 3, 309-319.	9.7	371
5	Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcÎμRIα. Nature, 2000, 406, 259-266.	27.8	327
6	Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2. Cell Host and Microbe, 2020, 28, 516-525.e5.	11.0	219
7	Structure of a trimeric variant of the Epstein–Barr virus glycoprotein B. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2880-2885.	7.1	199
8	The structural basis of herpesvirus entry. Nature Reviews Microbiology, 2021, 19, 110-121.	28.6	174
9	Ephrin receptor A2 is a functional entry receptor for Epstein–Barr virus. Nature Microbiology, 2018, 3, 172-180.	13.3	157
10	Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14920-14925.	7.1	147
11	Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22641-22646.	7.1	141
12	Structure of the Epstein-Barr Virus gp42 Protein Bound to the MHC Class II Receptor HLA-DR1. Molecular Cell, 2002, 9, 375-385.	9.7	138
13	De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science, 2020, 368, .	12.6	137
14	Class III viral membrane fusion proteins. Current Opinion in Structural Biology, 2009, 19, 189-196.	5.7	123
15	The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nature Communications, 2020, 11, 165.	12.8	123
16	Accelerated dissociation of IgE-FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells. Journal of Allergy and Clinical Immunology, 2014, 133, 1709-1719.e8.	2.9	122
17	Activation of paramyxovirus membrane fusion and virus entry. Current Opinion in Virology, 2014, 5, 24-33.	5.4	120
18	The role of allergenâ€specific IgE, IgG and IgA in allergic disease. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3627-3641.	5.7	100

THEODORE S JARDETZKY

#	Article	IF	CITATIONS
19	Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry. Virology, 2015, 479-480, 518-531.	2.4	96
20	Structure of the Human IgE-Fc CÎμ3-CÎμ4 Reveals Conformational Flexibility in the Antibody Effector Domains. Immunity, 2000, 13, 375-385.	14.3	89
21	Accelerated disassembly of IgE–receptor complexes by a disruptive macromolecular inhibitor. Nature, 2012, 491, 613-617.	27.8	89
22	Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nature Communications, 2016, 7, 11610.	12.8	86
23	Structural basis for Epstein–Barr virus host cell tropism mediated by gp42 and gHgL entry glycoproteins. Nature Communications, 2016, 7, 13557.	12.8	79
24	Activation of a paramyxovirus fusion protein is modulated by inside-out signaling from the cytoplasmic tail. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9217-9222.	7.1	78
25	Fusion Activation through Attachment Protein Stalk Domains Indicates a Conserved Core Mechanism of Paramyxovirus Entry into Cells. Journal of Virology, 2014, 88, 3925-3941.	3.4	76
26	The COMPLEXity in herpesvirus entry. Current Opinion in Virology, 2017, 24, 97-104.	5.4	74
27	Assembly and Architecture of the EBV B Cell Entry Triggering Complex. PLoS Pathogens, 2014, 10, e1004309.	4.7	68
28	Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nature Microbiology, 2017, 2, 16272.	13.3	65
29	Bottom-up de novo design of functional proteins with complex structural features. Nature Chemical Biology, 2021, 17, 492-500.	8.0	65
30	Mutations in the Parainfluenza Virus 5 Fusion Protein Reveal Domains Important for Fusion Triggering and Metastability. Journal of Virology, 2013, 87, 13520-13531.	3.4	62
31	Direct comparison of antibody responses to four SARS-CoV-2 vaccines in Mongolia. Cell Host and Microbe, 2021, 29, 1738-1743.e4.	11.0	61
32	Structure and stabilization of the Hendra virus F glycoprotein in its prefusion form. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1056-1061.	7.1	58
33	Structure of Epstein-Barr Virus Glycoprotein 42 Suggests a Mechanism for Triggering Receptor-Activated Virus Entry. Structure, 2009, 17, 223-233.	3.3	56
34	Hydrophobic Residues That Form Putative Fusion Loops of Epstein-Barr Virus Glycoprotein B Are Critical for Fusion Activity. Journal of Virology, 2007, 81, 9596-9600.	3.4	55
35	Structural basis for HLA-DQ binding by the streptococcal superantigen SSA. , 1999, 6, 123-129.		51
36	Binding-Site Interactions between Epstein-Barr Virus Fusion Proteins gp42 and gH/gL Reveal a Peptide That Inhibits both Epithelial and B-Cell Membrane Fusion. Journal of Virology, 2007, 81, 9216-9229.	3.4	50

THEODORE S JARDETZKY

#	Article	IF	CITATIONS
37	Structural and Mechanistic Insights into the Tropism of Epstein-Barr Virus. Molecules and Cells, 2016, 39, 286-291.	2.6	47
38	Mutational Analyses of Epstein-Barr Virus Glycoprotein 42 Reveal Functional Domains Not Involved in Receptor Binding but Required for Membrane Fusion. Journal of Virology, 2004, 78, 5946-5956.	3.4	46
39	Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2596-605.	7.1	44
40	HCMV trimer- and pentamer-specific antibodies synergize for virus neutralization but do not correlate with congenital transmission. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3728-3733.	7.1	42
41	Structural basis for nonneutralizing antibody competition at antigenic site II of the respiratory syncytial virus fusion protein. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6849-E6858.	7.1	38
42	Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nature Communications, 2017, 8, 781.	12.8	38
43	THE CRYSTAL STRUCTURE OF THE HUMAN HIGH-AFFINITY IgE RECEPTOR (FcεRIα). Annual Review of Immunology, 1999, 17, 973-976.	21.8	37
44	Structural Changes in the Lectin Domain of CD23, the Low-Affinity IgE Receptor, upon Calcium Binding. Structure, 2006, 14, 1049-1058.	3.3	36
45	Conformational Flexibility in Immunoglobulin E-Fc3–4 Revealed in Multiple Crystal Forms. Journal of Molecular Biology, 2009, 393, 176-190.	4.2	35
46	Ephrin Receptor A4 is a New Kaposi's Sarcoma-Associated Herpesvirus Virus Entry Receptor. MBio, 2019, 10, .	4.1	34
47	Accuracy of serological testing for SARSâ€CoVâ€2 antibodies: First results of a large mixedâ€method evaluation study. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 853-865.	5.7	34
48	Cleavage and Secretion of Epstein-Barr Virus Glycoprotein 42 Promote Membrane Fusion with B Lymphocytes. Journal of Virology, 2009, 83, 6664-6672.	3.4	32
49	H-IPSE Is a Pathogen-Secreted Host Nucleus-Infiltrating Protein (Infiltrin) Expressed Exclusively by the Schistosoma haematobium Egg Stage. Infection and Immunity, 2017, 85, .	2.2	29
50	Analysis of Epstein-Barr Virus Glycoprotein B Functional Domains via Linker Insertion Mutagenesis. Journal of Virology, 2009, 83, 734-747.	3.4	27
51	Inhibition of EBV-mediated membrane fusion by anti-gHgL antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8703-E8710.	7.1	27
52	The Epstein-Barr Virus (EBV) Glycoprotein B Cytoplasmic C-Terminal Tail Domain Regulates the Energy Requirement for EBV-Induced Membrane Fusion. Journal of Virology, 2014, 88, 11686-11695.	3.4	22
53	Therapeutic exploitation of IPSE, a urogenital parasiteâ€derived host modulatory protein, for chemotherapyâ€induced hemorrhagic cystitis. FASEB Journal, 2018, 32, 4408-4419.	0.5	21
54	Structure-guided design of ultrapotent disruptive IgE inhibitors to rapidly terminate acute allergic reactions. Journal of Allergy and Clinical Immunology, 2021, 148, 1049-1060.	2.9	21

Theodore S Jardetzky

#	Article	IF	CITATIONS
55	The Conserved Disulfide Bond within Domain II of Epstein-Barr Virus gH Has Divergent Roles in Membrane Fusion with Epithelial Cells and B Cells. Journal of Virology, 2014, 88, 13570-13579.	3.4	18
56	EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer–cell interfaces. Science Advances, 2021, 7, .	10.3	18
57	Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity. Journal of Virology, 2016, 90, 7778-7788.	3.4	16
58	Epstein-Barr Virus Fusion with Epithelial Cells Triggered by gB Is Restricted by a gL Glycosylation Site. Journal of Virology, 2017, 91, .	3.4	16
59	IPSE, a urogenital parasite-derived immunomodulatory protein, ameliorates ifosfamide-induced hemorrhagic cystitis through downregulation of pro-inflammatory pathways. Scientific Reports, 2019, 9, 1586.	3.3	15
60	IPSE, an abundant egg-secreted protein of the carcinogenic helminth Schistosoma haematobium, promotes proliferation of bladder cancer cells and angiogenesis. Infectious Agents and Cancer, 2020, 15, 63.	2.6	15
61	The Cytoplasmic Tail Domain of Epstein-Barr Virus gH Regulates Membrane Fusion Activity through Altering gH Binding to gp42 and Epithelial Cell Attachment. MBio, 2016, 7, .	4.1	14
62	A Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV. PLoS ONE, 2016, 11, e0155917.	2.5	14
63	A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion. Virology, 2013, 436, 118-126.	2.4	13
64	Epstein-Barr Virus gH/gL and Kaposi's Sarcoma-Associated Herpesvirus gH/gL Bind to Different Sites on EphA2 To Trigger Fusion. Journal of Virology, 2020, 94, .	3.4	11
65	An Engineered Disulfide Bond Reversibly Traps the IgE-Fc3–4 in a Closed, Nonreceptor Binding Conformation. Journal of Biological Chemistry, 2012, 287, 36251-36257.	3.4	10
66	Probing the Functions of the Paramyxovirus Glycoproteins F and HN with a Panel of Synthetic Antibodies. Journal of Virology, 2014, 88, 11713-11725.	3.4	9
67	IPSE, a parasite-derived host immunomodulatory protein, is a potential therapeutic for hemorrhagic cystitis. American Journal of Physiology - Renal Physiology, 2019, 316, F1133-F1140.	2.7	8
68	On the Stability of Parainfluenza Virus 5 F Proteins. Journal of Virology, 2015, 89, 3438-3441.	3.4	6
69	Membrane Anchoring of Epstein-Barr Virus gp42 Inhibits Fusion with B Cells Even with Increased Flexibility Allowed by Engineered Spacers. MBio, 2015, 6, .	4.1	6
70	Directed evolution of and structural insights into antibody-mediated disruption of a stable receptor-ligand complex. Nature Communications, 2021, 12, 7069.	12.8	6
71	Comparative Mutagenesis of Pseudorabies Virus and Epstein-Barr Virus gH Identifies a Structural Determinant within Domain III of gH Required for Surface Expression and Entry Function. Journal of Virology, 2016, 90, 2285-2293.	3.4	5
72	Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3844-51.	7.1	4

#	Article	IF	CITATIONS
73	IPSE, a urogenital parasite-derived immunomodulatory molecule, suppresses bladder pathogenesis and anti-microbial peptide gene expression in bacterial urinary tract infection. Parasites and Vectors, 2020, 13, 615.	2.5	2
74	Cryo-Electron Microscopy Structure and Interactions of the Human Cytomegalovirus gHgLgO Trimer with Platelet-Derived Growth Factor Receptor Alpha. MBio, 2021, 12, e0262521.	4.1	2
75	Editorial overview: Virus structure and functions. Current Opinion in Virology, 2017, 24, ix.	5.4	1
76	IPSE, a parasite-derived, host immunomodulatory infiltrin protein, alleviates resiniferatoxin-induced bladder pain. Molecular Pain, 2020, 16, 174480692097009.	2.1	1
77	Identification of functionally important domains of human cytomegalovirus gO that act after trimer binding to receptors. PLoS Pathogens, 2022, 18, e1010452.	4.7	1