Andreas Walther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4149470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chemical Reviews, 2013, 113, 5194-5261.	47.7	1,512
2	Janus particles. Soft Matter, 2008, 4, 663.	2.7	798
3	Guided hierarchical co-assembly of soft patchy nanoparticles. Nature, 2013, 503, 247-251.	27.8	573
4	Precise hierarchical self-assembly of multicompartment micelles. Nature Communications, 2012, 3, 710.	12.8	504
5	Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways. Nano Letters, 2010, 10, 2742-2748.	9.1	435
6	Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules, 2011, 12, 633-641.	5.4	383
7	Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chemical Society Reviews, 2017, 46, 5588-5619.	38.1	375
8	Color Tunability and Electrochemiluminescence of Silver Nanoclusters. Angewandte Chemie - International Edition, 2009, 48, 2122-2125.	13.8	369
9	Janus Discs. Journal of the American Chemical Society, 2007, 129, 6187-6198.	13.7	296
10	Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles. ACS Nano, 2008, 2, 1167-1178.	14.6	284
11	Emulsion Polymerization Using Janus Particles as Stabilizers. Angewandte Chemie - International Edition, 2008, 47, 711-714.	13.8	280
12	Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios. Nature Communications, 2015, 6, 5967.	12.8	252
13	Facile, Solution-Based Synthesis of Soft, Nanoscale Janus Particles with Tunable Janus Balance. Journal of the American Chemical Society, 2012, 134, 13850-13860.	13.7	247
14	Multifunctional Highâ€Performance Biofibers Based on Wetâ€Extrusion of Renewable Native Cellulose Nanofibrils. Advanced Materials, 2011, 23, 2924-2928.	21.0	246
15	Humidity and Multiscale Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose Nanofibrils. Biomacromolecules, 2013, 14, 4497-4506.	5.4	230
16	Biocatalytic Feedbackâ€Driven Temporal Programming of Selfâ€Regulating Peptide Hydrogels. Angewandte Chemie - International Edition, 2015, 54, 13258-13262.	13.8	218
17	Water-soluble organo-silica hybrid nanowires. Nature Materials, 2008, 7, 718-722.	27.5	217
18	Supramolecular Control of Stiffness and Strength in Lightweight Highâ€Performance Nacreâ€Mimetic Paper with Fireâ€Shielding Properties. Angewandte Chemie - International Edition, 2010, 49, 6448-6453.	13.8	204

#	Article	IF	CITATIONS
19	Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering. Advanced Materials, 2015, 27, 2989-2995.	21.0	195
20	Surface Modification of Poly(divinylbenzene) Microspheres via Thiolâ^'Ene Chemistry and Alkyneâ^'Azide Click Reactions. Macromolecules, 2009, 42, 3707-3714.	4.8	192
21	Viewpoint: From Responsive to Adaptive and Interactive Materials and Materials Systems: A Roadmap. Advanced Materials, 2020, 32, e1905111.	21.0	177
22	Double-Faced Micelles from Water-Soluble Polymers. Angewandte Chemie - International Edition, 2006, 45, 6673-6676.	13.8	174
23	Synthesis via RAFT Polymerization of Tadpole-Shaped Organic/Inorganic Hybrid Poly(acrylic acid) Containing Polyhedral Oligomeric Silsesquioxane (POSS) and Their Self-assembly in Water. Macromolecules, 2009, 42, 2563-2569.	4.8	168
24	Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure. ACS Nano, 2015, 9, 10637-10646.	14.6	166
25	Self-Assembly of Janus Cylinders into Hierarchical Superstructures. Journal of the American Chemical Society, 2009, 131, 4720-4728.	13.7	165
26	Polyelectrolyte Brushes Grafted from Cellulose Nanocrystals Using Cu-Mediated Surface-Initiated Controlled Radical Polymerization. Biomacromolecules, 2011, 12, 2997-3006.	5.4	155
27	Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison. Biomacromolecules, 2014, 15, 2709-2717.	5.4	154
28	Generic Concept to Program the Time Domain of Self-Assemblies with a Self-Regulation Mechanism. Nano Letters, 2015, 15, 2213-2219.	9.1	153
29	Thermo-Reversible Formation of Wormlike Micelles with a Microphase-Separated Corona from a Semicrystalline Triblock Terpolymer. Macromolecules, 2008, 41, 3235-3242.	4.8	152
30	Influence of Janus Particle Shape on Their Interfacial Behavior at Liquid–Liquid Interfaces. Langmuir, 2013, 29, 1388-1394.	3.5	147
31	Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angewandte Chemie - International Edition, 2011, 50, 8688-8691.	13.8	142
32	Hierarchical Nacre Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Selfâ€Healing Polymers. Angewandte Chemie - International Edition, 2015, 54, 8653-8657.	13.8	139
33	Antagonistic Enzymes in a Biocatalytic pH Feedback System Program Autonomous DNA Hydrogel Life Cycles. Nano Letters, 2017, 17, 4989-4995.	9.1	136
34	Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Science Advances, 2019, 5, eaaw0590.	10.3	134
35	Water-Soluble Organoâ^'Silica Hybrid Nanotubes Templated by Cylindrical Polymer Brushes. Journal of the American Chemical Society, 2010, 132, 16587-16592.	13.7	131
36	Facile Method for Stiff, Tough, and Strong Nanocomposites by Direct Exfoliation of Multilayered Graphene into Native Nanocellulose Matrix. Biomacromolecules, 2012, 13, 1093-1099.	5.4	126

#	Article	IF	CITATIONS
37	Facile Access to Large-Scale, Self-Assembled, Nacre-Inspired, High-Performance Materials with Tunable Nanoscale Periodicities. ACS Applied Materials & Interfaces, 2013, 5, 3738-3747.	8.0	121
38	Undulated Multicompartment Cylinders by the Controlled and Directed Stacking of Polymer Micelles with a Compartmentalized Corona. Angewandte Chemie - International Edition, 2009, 48, 2877-2880.	13.8	118
39	Janus Cylinders at Liquid–Liquid Interfaces. Langmuir, 2011, 27, 9807-9814.	3.5	117
40	Modular Design of Programmable Mechanofluorescent DNA Hydrogels. Nature Communications, 2019, 10, 528.	12.8	111
41	Phytochromeâ€Based Extracellular Matrix with Reversibly Tunable Mechanical Properties. Advanced Materials, 2019, 31, e1806727.	21.0	104
42	Multicompartment Core Micelles of Triblock Terpolymers in Organic Media. Macromolecules, 2009, 42, 3540-3548.	4.8	99
43	Interpolyelectrolyte Complexes of Dynamic Multicompartment Micelles. ACS Nano, 2009, 3, 2095-2102.	14.6	99
44	Aligned Bioinspired Cellulose Nanocrystal-Based Nanocomposites with Synergetic Mechanical Properties and Improved Hygromechanical Performance. ACS Applied Materials & Interfaces, 2015, 7, 4595-4607.	8.0	99
45	Performance of three PDMAEMA-based polycation architectures as gene delivery agents in comparison to linear and branched PEI. Reactive and Functional Polymers, 2010, 70, 1-10.	4.1	95
46	Multiple Morphologies, Phase Transitions, and Cross-Linking of Crew-Cut Aggregates of Polybutadiene-block-poly(2-vinylpyridine) Diblock Copolymers. Macromolecules, 2008, 41, 3254-3260.	4.8	93
47	Nanoblossoms:Â Light-Induced Conformational Changes of Cationic Polyelectrolyte Stars in the Presence of Multivalent Counterions. Nano Letters, 2007, 7, 167-171.	9.1	92
48	Synthesis of Highly Branched Cationic Polyelectrolytes via Self-Condensing Atom Transfer Radical Copolymerization with 2-(Diethylamino)ethyl Methacrylate. Macromolecules, 2004, 37, 2054-2066.	4.8	91
49	Print your membrane: Rapid prototyping of complex 3D-PDMS membranes via a sacrificial resist. Journal of Membrane Science, 2015, 478, 12-18.	8.2	90
50	3D Structures of Responsive Nanocompartmentalized Microgels. Nano Letters, 2016, 16, 7295-7301.	9.1	90
51	Blue, green and red emissive silver nanoclusters formed in organic solvents. Nanoscale, 2012, 4, 4434.	5.6	88
52	A Facile Template-Free Approach to Magnetodriven, Multifunctional Artificial Cilia. ACS Applied Materials & Interfaces, 2010, 2, 2226-2230.	8.0	87
53	ATPâ€Responsive and ATPâ€Fueled Selfâ€Assembling Systems and Materials. Advanced Materials, 2020, 32, e2002629.	21.0	87
54	Roomâ€Temperature Phosphorescence Enabled through Nacreâ€Mimetic Nanocomposite Design. Advanced Materials, 2021, 33, e2005973.	21.0	87

#	Article	IF	CITATIONS
55	Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nature Nanotechnology, 2018, 13, 730-738.	31.5	85
56	Visible Light [2 + 2] Cycloadditions for Reversible Polymer Ligation. Macromolecules, 2018, 51, 3802-3807.	4.8	84
57	Mixed, Multicompartment, or Janus Micelles? A Systematic Study of Thermoresponsive Bis-Hydrophilic Block Terpolymers. Langmuir, 2010, 26, 12237-12246.	3.5	82
58	Exceptionally Ductile and Tough Biomimetic Artificial Nacre with Gas Barrier Function. Advanced Materials, 2018, 30, e1802477.	21.0	81
59	Photonic Devices Out of Equilibrium: Transient Memory, Signal Propagation, and Sensing. Advanced Materials, 2017, 29, 1606842.	21.0	79
60	Colloidal Ionic Assembly between Anionic Native Cellulose Nanofibrils and Cationic Block Copolymer Micelles into Biomimetic Nanocomposites. Biomacromolecules, 2011, 12, 2074-2081.	5.4	78
61	Vitrimer Chemistry Meets Cellulose Nanofibrils: Bioinspired Nanopapers with High Water Resistance and Strong Adhesion. Biomacromolecules, 2019, 20, 1045-1055.	5.4	77
62	Dynamic Multicompartment-Core Micelles in Aqueous Media. Langmuir, 2009, 25, 10962-10969.	3.5	76
63	Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nature Nanotechnology, 2020, 15, 914-921.	31.5	76
64	Miktoarm stars of poly(ethylene oxide) and poly(dimethylaminoethyl methacrylate): manipulation of micellization by temperature and light. Soft Matter, 2009, 5, 1812.	2.7	75
65	Celebrating Soft Matter's 10th Anniversary: Approaches to program the time domain of self-assemblies. Soft Matter, 2015, 11, 7857-7866.	2.7	75
66	Biocatalytic Feedbackâ€Driven Temporal Programming of Selfâ€Regulating Peptide Hydrogels. Angewandte Chemie, 2015, 127, 13456-13460.	2.0	73
67	Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers. ACS Applied Materials & Interfaces, 2016, 8, 11031-11040.	8.0	71
68	3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly. Nano Letters, 2016, 16, 7870-7874.	9.1	70
69	Structures of amphiphilic Janus discs in aqueous media. Soft Matter, 2009, 5, 385-390.	2.7	68
70	Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake. Nanoscale, 2019, 11, 23259-23267.	5.6	66
71	Cellulose Nanofibril Hydrogel Tubes as Sacrificial Templates for Freestanding Tubular Cell Constructs. Biomacromolecules, 2016, 17, 905-913.	5.4	63
72	Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics. Nanoscale, 2013, 5, 9348.	5.6	62

#	Article	IF	CITATIONS
73	Cellulose Nanofibril Hydrogel Promotes Hepatic Differentiation of Human Liver Organoids. Advanced Healthcare Materials, 2020, 9, e1901658.	7.6	62
74	Multiple Light Control Mechanisms in ATPâ€Fueled Nonâ€equilibrium DNA Systems. Angewandte Chemie - International Edition, 2020, 59, 12084-12092.	13.8	62
75	Tough and Catalytically Active Hybrid Biofibers Wet-Spun From Nanochitin Hydrogels. Biomacromolecules, 2012, 13, 4205-4212.	5.4	61
76	Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe ₃ O ₄ Nanoparticles. Macromolecular Rapid Communications, 2010, 31, 1608-1615.	3.9	60
77	e-Micellization: Electrochemical, Reversible Switching of Polymer Aggregation. Macromolecules, 2009, 42, 7254-7257.	4.8	59
78	Pathway Complexity in Fuel-Driven DNA Nanostructures with Autonomous Reconfiguration of Multiple Dynamic Steady States. Journal of the American Chemical Society, 2020, 142, 685-689.	13.7	59
79	Multicompartment Nanoparticles Formed by a Heparin-Mimicking Block Terpolymer in Aqueous Solutions. Macromolecules, 2009, 42, 5605-5613.	4.8	58
80	Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacreâ€mimetic Nanocomposites. Advanced Materials, 2013, 25, 5055-5059.	21.0	57
81	Social Self‣orting of Colloidal Families in Coâ€Assembling Microgel Systems. Angewandte Chemie - International Edition, 2017, 56, 2176-2182.	13.8	57
82	Nanocellulose Aerogels for Supporting Iron Catalysts and In Situ Formation of Polyethylene Nanocomposites. Advanced Functional Materials, 2017, 27, 1605586.	14.9	57
83	Core-crosslinked block copolymernanorods as templates for grafting [SiMo12O40]4–Keggin ions. Chemical Communications, 2008, , 489-491.	4.1	56
84	Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers. Angewandte Chemie - International Edition, 2016, 55, 5966-5970.	13.8	56
85	Formation of hydrophobic bridges between multicompartment micelles of miktoarm star terpolymers in water. Chemical Communications, 2009, , 1127.	4.1	55
86	Lightâ€Fueled, Spatiotemporal Modulation of Mechanical Properties and Rapid Selfâ€Healing of Grapheneâ€Đoped Supramolecular Elastomers. Advanced Functional Materials, 2017, 27, 1700767.	14.9	55
87	Programmable ATP-Fueled DNA Coacervates by Transient Liquid-Liquid Phase Separation. CheM, 2020, 6, 3329-3343.	11.7	55
88	Doubleâ€Grafted Cylindrical Brushes: Synthesis and Characterization of Poly(lauryl methacrylate) Brushes. Macromolecular Chemistry and Physics, 2007, 208, 1666-1675.	2.2	53
89	Fuel-Driven Transient DNA Strand Displacement Circuitry with Self-Resetting Function. Journal of the American Chemical Society, 2020, 142, 21102-21109.	13.7	53
90	Counterion Size and Nature Control Structural and Mechanical Response in Cellulose Nanofibril Nanopapers. Biomacromolecules, 2017, 18, 1642-1653.	5.4	50

#	Article	IF	CITATIONS
91	Nacre-Mimetic Clay/Xyloglucan Bionanocomposites: A Chemical Modification Route for Hygromechanical Performance at High Humidity. Biomacromolecules, 2013, 14, 3842-3849.	5.4	49
92	Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. Biomacromolecules, 2016, 17, 2417-2426.	5.4	49
93	Superparamagnetic and fluorescent thermo-responsive core–shell–corona hybrid nanogels with a protective silica shell. Journal of Colloid and Interface Science, 2012, 374, 45-53.	9.4	47
94	ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nature Communications, 2020, 11, 3658.	12.8	47
95	Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angewandte Chemie - International Edition, 2021, 60, 7117-7125.	13.8	47
96	Janus Triad: Three Types of Nonspherical, Nanoscale Janus Particles from One Single Triblock Terpolymer. Macromolecules, 2011, 44, 9221-9229.	4.8	46
97	DNA–Polymer Nanostructures by RAFT Polymerization and Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 15474-15479.	13.8	46
98	Clickable, Biocompatible, and Fluorescent Hybrid Nanoparticles for Intracellular Delivery and Optical Imaging. Biomacromolecules, 2010, 11, 390-396.	5.4	45
99	Conducting, Self-Assembled, Nacre-Mimetic Polymer/Clay Nanocomposites. ACS Applied Materials & Interfaces, 2015, 7, 15681-15685.	8.0	44
100	Raising the Bar in Aromatic Donor–Acceptor Interactions with Cyclic Trinuclear Gold(I) Complexes as Strong π-Donors. Journal of the American Chemical Society, 2018, 140, 17932-17944.	13.7	43
101	Bis-Hydrophilic Block Terpolymers via RAFT Polymerization: Toward Dynamic Micelles with Tunable Corona Properties. Macromolecules, 2008, 41, 8608-8619.	4.8	42
102	Structure-Tunable Bidirectional Hybrid Nanowires via Multicompartment Cylinders. Nano Letters, 2009, 9, 2026-2030.	9.1	42
103	Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites. Nano Letters, 2016, 16, 5176-5182.	9.1	42
104	pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angewandte Chemie - International Edition, 2021, 60, 11398-11405.	13.8	42
105	3D DNA Origami Nanoparticles: From Basic Design Principles to Emerging Applications in Soft Matter and (Bioâ€)Nanosciences. Angewandte Chemie - International Edition, 2018, 57, 10436-10448.	13.8	41
106	Self-Assembled Bioinspired Nanocomposites. Accounts of Chemical Research, 2020, 53, 2622-2635.	15.6	41
107	2D Patterned Ionâ€Exchange Membranes Induce Electroconvection. Advanced Materials Interfaces, 2019, 6, 1801309.	3.7	40
108	Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nature Communications, 2021, 12, 5132.	12.8	40

#	Article	IF	CITATIONS
109	Wavelengthâ€Selective Softening of Hydrogel Networks. Advanced Materials, 2021, 33, e2102184.	21.0	39
110	Supracolloidal Selfâ€Assembly of Divalent Janus 3D DNA Origami via Programmable Multivalent Host/Guest Interactions. Angewandte Chemie - International Edition, 2020, 59, 5515-5520.	13.8	38
111	Controlled crosslinking of polybutadiene containing block terpolymer bulk structures: A facile way towards complex and functional nanostructures. Polymer, 2008, 49, 3217-3227.	3.8	37
112	Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angewandte Chemie - International Edition, 2021, 60, 3619-3624.	13.8	37
113	Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles. Scientific Reports, 2017, 7, 39910.	3.3	36
114	Block Copolymer Micelles with Inverted Morphologies. Angewandte Chemie - International Edition, 2017, 56, 10992-10994.	13.8	36
115	Recyclable and Light-Adaptive Vitrimer-Based Nacre-Mimetic Nanocomposites. ACS Nano, 2021, 15, 5043-5055.	14.6	36
116	Hierarchical Selfâ€Assembly of 3Dâ€Printed Lockâ€andâ€Key Colloids through Shape Recognition. Angewandte Chemie - International Edition, 2016, 55, 11261-11265.	13.8	35
117	Sustainable Chitin Nanofibrils Provide Outstanding Flame-Retardant Nanopapers. Biomacromolecules, 2019, 20, 1098-1108.	5.4	35
118	Waterborne Methacrylate-Based Vitrimers. ACS Macro Letters, 2020, 9, 70-76.	4.8	35
119	Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers, 2021, 13, 1663.	4.5	35
120	Feedback and Communication in Active Hydrogel Spheres with pH Fronts: Facile Approaches to Grow Soft Hydrogel Structures. Angewandte Chemie - International Edition, 2021, 60, 22537-22546.	13.8	34
121	Biomimetic Dopamineâ€Diels–Alder Switches. Macromolecular Rapid Communications, 2013, 34, 640-644.	3.9	33
122	Switchable Supracolloidal Coassembly of Microgels Mediated by Host/Guest Interactions. ACS Macro Letters, 2017, 6, 310-314.	4.8	33
123	Biodegradation of Crystalline Cellulose Nanofibers by Means of Enzyme Immobilized-Alginate Beads and Microparticles. Polymers, 2020, 12, 1522.	4.5	31
124	Synthesis of Dense Poly(acrylic acid) Brushes and Their Interaction with Amine-Functional Silsesquioxane Nanoparticles. Langmuir, 2008, 24, 9421-9429.	3.5	30
125	Effect of Molecular Architecture of PDMAEMA–POEGMA Random and Block Copolymers on Their Adsorption on Regenerated and Anionic Nanocelluloses and Evidence of Interfacial Water Expulsion. Journal of Physical Chemistry B, 2015, 119, 15275-15286.	2.6	30
126	Best Practice for Reporting Wet Mechanical Properties of Nanocellulose-Based Materials. Biomacromolecules, 2020, 21, 2536-2540.	5.4	30

#	Article	IF	CITATIONS
127	Polyacid microgels with adaptive hydrophobic pockets and ampholytic character: synthesis, solution properties and insights into internal nanostructure by cryogenic-TEM. Soft Matter, 2015, 11, 8342-8353.	2.7	28
128	Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nature Communications, 2021, 12, 1312.	12.8	28
129	Cleaning the Click: A Simple Electrochemical Avenue for Copper Removal from Strongly Coordinating Macromolecules. ACS Macro Letters, 2015, 4, 298-301.	4.8	27
130	Dynamic covalent single chain nanoparticles based on hetero Diels–Alder chemistry. Chemical Communications, 2017, 53, 157-160.	4.1	27
131	pH Tuning of Waterâ€Soluble Arylazopyrazole Photoswitches. Chemistry - A European Journal, 2020, 26, 13203-13212.	3.3	27
132	Biodegradable Laser Arrays Selfâ€Assembled from Plant Resources. Advanced Materials, 2020, 32, e2002332.	21.0	27
133	Structure, Mechanical Properties, and Dynamics of Polyethylenoxide/Nanoclay Nacre-Mimetic Nanocomposites. Macromolecules, 2020, 53, 1716-1725.	4.8	27
134	pH-Dependent Self-Assembly of Polystyrene- <i>block</i> -Poly((sulfamate-carboxylate)isoprene) Copolymer in Aqueous Media. Langmuir, 2008, 24, 12017-12025.	3.5	26
135	Social Selfâ€Sorting of Colloidal Families in Coâ€Assembling Microgel Systems. Angewandte Chemie, 2017, 129, 2208-2214.	2.0	26
136	Compartmentalized nanoparticles in aqueous solution through hierarchical self-assembly of triblock glycopolymers. Polymer Chemistry, 2018, 9, 4132-4142.	3.9	26
137	Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. Journal of Materials Chemistry B, 2013, 1, 835-840.	5.8	25
138	Photochemical ligation meets nanocellulose: a versatile platform for self-reporting functional materials. Materials Horizons, 2018, 5, 560-568.	12.2	25
139	Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angewandte Chemie - International Edition, 2019, 58, 7335-7340.	13.8	25
140	Dissipative Organization of DNA Oligomers for Transient Catalytic Function. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
141	Highly Mineralized Biomimetic Polysaccharide Nanofiber Materials Using Enzymatic Mineralization. Biomacromolecules, 2020, 21, 2176-2186.	5.4	24
142	Deoxyguanosine Phosphate Mediated Sacrificial Bonds Promote Synergistic Mechanical Properties in Nacre-Mimetic Nanocomposites. Biomacromolecules, 2013, 14, 2531-2535.	5.4	22
143	Nanoscale hybrid silica/polymer Janus particles with a double-responsive hemicorona. Polymer, 2015, 79, 299-308.	3.8	22
144	Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers. Angewandte Chemie, 2016. 128. 6070-6074.	2.0	22

#	Article	IF	CITATIONS
145	Outstanding Synergies in Mechanical Properties of Bioinspired Cellulose Nanofibril Nanocomposites using Self-Cross-Linking Polyurethanes. ACS Applied Polymer Materials, 2019, 1, 3334-3342.	4.4	22
146	Scalable One-Pot-Liquid-Phase Oligonucleotide Synthesis for Model Network Hydrogels. Journal of the American Chemical Society, 2020, 142, 16610-16621.	13.7	22
147	Preparation of Highly Monodisperse Monopatch Particles with Orthogonal Click-Type Functionalization and Biorecognition. Small, 2015, 11, 4540-4548.	10.0	21
148	Polyglycidol-Based Prepolymers to Tune the Nanostructure of Microgels. Macromolecules, 2014, 47, 1633-1645.	4.8	19
149	Facile Access to Hydroxyâ€Functional Core–Shell Microspheres via Grafting of Ethylene Oxide by Anionic Ringâ€Opening Polymerization. Macromolecular Rapid Communications, 2009, 30, 1009-1014.	3.9	18
150	Dry Processing and Recycling of Thick Nacre–Mimetic Nanocomposites. Advanced Functional Materials, 2021, 31, 2102677.	14.9	18
151	Wavelengthâ€Gated Adaptation of Hydrogel Properties via Photoâ€Dynamic Multivalency in Associative Star Polymers. Angewandte Chemie - International Edition, 2021, 60, 4358-4367.	13.8	17
152	Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angewandte Chemie, 2021, 133, 3663-3668.	2.0	17
153	Spinodal decomposition of chemically fueled polymer solutions. Soft Matter, 2021, 17, 5401-5409.	2.7	17
154	Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angewandte Chemie - International Edition, 2020, 59, 18161-18165.	13.8	16
155	Direct Synthesis of Poly(potassium 3â€sulfopropyl methacrylate) Cylindrical Polymer Brushes via ATRP Using a Supramolecular Complex With Crown Ether. Macromolecular Rapid Communications, 2010, 31, 1462-1466.	3.9	15
156	Strong anionic polyelectrolyte microgels. Polymer Chemistry, 2015, 6, 5550-5554.	3.9	15
157	Facile and On-Demand Cross-Linking of Nacre-Mimetic Nanocomposites Using Tailor-Made Polymers with Latent Reactivity. ACS Applied Materials & amp; Interfaces, 2018, 10, 20250-20255.	8.0	15
158	Nonâ€Equilibrium, Lightâ€Adaptive, Steadyâ€State Reconfiguration of Mechanical Patterns in Bioinspired Nanocomposites. Advanced Functional Materials, 2020, 30, 1905309.	14.9	15
159	Multiple Light Control Mechanisms in ATPâ€Fueled Nonâ€equilibrium DNA Systems. Angewandte Chemie, 2020, 132, 12182-12190.	2.0	15
160	Granular Cellulose Nanofibril Hydrogel Scaffolds for 3D Cell Cultivation. Macromolecular Rapid Communications, 2020, 41, 2000191.	3.9	15
161	Modular functionalization and hydrogel formation <i>via</i> red-shifted and self-reporting [2+2] cycloadditions. Chemical Communications, 2021, 57, 805-808.	4.1	15
162	One-Component DNA Mechanoprobes for Facile Mechanosensing in Photopolymerized Hydrogels and Elastomers. ACS Macro Letters, 2021, 10, 671-678.	4.8	15

#	Article	IF	CITATIONS
163	1D Colloidal chains: recent progress from formation to emergent properties and applications. Chemical Society Reviews, 2022, 51, 4023-4074.	38.1	15
164	A Versatile Synthesis Platform To Prepare Uniform, Highly Functional Microgels via Click-Type Functionalization of Latex Particles. Macromolecules, 2014, 47, 2257-2267.	4.8	14
165	Poly(4â€vinyl imidazole): A pHâ€Responsive Trigger for Hierarchical Selfâ€Assembly of Multicompartment Micelles Based upon Triblock Terpolymers. Macromolecular Chemistry and Physics, 2019, 220, 1900131.	2.2	14
166	Switchable supracolloidal 3D DNA origami nanotubes mediated through fuel/antifuel reactions. Nanoscale, 2020, 12, 16995-17004.	5.6	14
167	Selfâ€Regulating Colloidal Coâ€Assemblies That Accelerate Their Own Destruction via Chemoâ€Structural Feedback. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
168	Combining the incompatible: Block copolymers consecutively displaying activated esters and amines and their use as protein-repellent surface modifiers with multivalent biorecognition. Polymer Chemistry, 2015, 6, 476-486.	3.9	13
169	Tunable and Large-Scale Model Network StarPEG-DNA Hydrogels. Macromolecules, 2021, 54, 7125-7133.	4.8	12
170	Templateâ€directed synthesis of hybrid nanowires and nanorods. Physica Status Solidi (B): Basic Research, 2010, 247, 2436-2450.	1.5	11
171	Bottom-up design of model network elastomers and hydrogels from precise star polymers. Polymer Chemistry, 2019, 10, 3740-3750.	3.9	11
172	Glass Transition Temperature Regulates Mechanical Performance in Nacreâ€Mimetic Nanocomposites. Macromolecular Rapid Communications, 2020, 41, e2000380.	3.9	11
173	Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angewandte Chemie, 2021, 133, 7193-7201.	2.0	11
174	pH Feedback Lifecycles Programmed by Enzymatic Logic Gates Using Common Foods as Fuels. Angewandte Chemie, 2021, 133, 11499-11506.	2.0	11
175	Molecular communication relays for dynamic cross-regulation of self-sorting fibrillar self-assemblies. Science Advances, 2021, 7, eabj5827.	10.3	11
176	Simple Platform Method for the Synthesis of Densely Functionalized Microgels by Modification of Active Ester Latex Particles. Macromolecular Rapid Communications, 2016, 37, 1323-1330.	3.9	10
177	Hierarchical cross-linking for synergetic toughening in crustacean-mimetic nanocomposites. Nanoscale, 2020, 12, 12958-12969.	5.6	10
178	Blockcopolymerâ€Mizellen mit inversen Morphologien. Angewandte Chemie, 2017, 129, 11136-11138.	2.0	9
179	An Opto―and Thermalâ€Rewrite PCM/CNFâ€ŀR 780 Energy Storage Nanopaper with Mechanical Regulated Performance. Small, 2022, 18, .	10.0	8
180	Amphiphilic Diblock Copolymer and Polycaprolactone Blends to Produce New Vesicular Nanocarriers. Journal of Biomedical Nanotechnology, 2012, 8, 272-279.	1.1	7

#	Article	lF	CITATIONS
181	Hierarchische Selbstassemblierung dreidimensional gedruckter Schlüssel/Schlossâ€Kolloide durch Formerkennung. Angewandte Chemie, 2016, 128, 11429-11434.	2.0	6
182	Bioactive Patchy Nanoparticles with Compartmentalized Cargoes for Simultaneous and Trackable Delivery. Angewandte Chemie, 2019, 131, 7413-7418.	2.0	6
183	Peptizing Mechanism at the Molecular Level of Laponite Nanoclay Gels. Langmuir, 2017, 33, 66-74.	3.5	5
184	Multivalency Pattern Recognition to Sort Colloidal Assemblies. Small, 2021, 17, e2005668.	10.0	5
185	New Amphiphilic Nanostructures Based on Block Terpolymers Made By Anionic Polymerization. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 167-186.	0.5	3
186	Nanofibrillar Cellulose as an Enzymatically and Flow Driven Degradable Scaffold for Three-Dimensional Tissue Engineering. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, .	0.5	3
187	Soft, Nanoscale Janus Particles by Macromolecular Engineering and Molecular Self-assembly. RSC Smart Materials, 2012, , 1-28.	0.1	2
188	WellenlÄ ¤ gengesteuerte Adaption der Hydrogeleigenschaften durch Photodynamische Multivalenz in Assoziierenden Sternpolymeren. Angewandte Chemie, 2021, 133, 4404-4413.	2.0	2
189	Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane. Biomacromolecules, 2022, 23, 1693-1702.	5.4	2
190	Biomaterials: Phytochromeâ€Based Extracellular Matrix with Reversibly Tunable Mechanical Properties (Adv. Mater. 12/2019). Advanced Materials, 2019, 31, 1970083.	21.0	1
191	Suprakolloidale Selbstorganisation von bivalenten Janusâ€3Dâ€DNAâ€Origami über programmierbare, multivalente Wirt/Gastâ€Wechselwirkungen. Angewandte Chemie, 2020, 132, 5557-5563.	2.0	1
192	Coreâ€crosslinked block copolymers as templates for grafting keggin polyoxometalates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2092-2092.	1.2	0
193	AUTONOMOUS CHEMICALLY DRIVEN MATERIALS SYSTEMS INSPIRED FROM LIFE. , 2021, , .		0
194	Selfâ€Regulating Colloidal Coâ€Assemblies That Accelerate Their Own Destruction via Chemoâ€Structural Feedback. Angewandte Chemie, 0, , .	2.0	0