Sebastien Brosse

List of Publications by Year in descending order

[^0]

Functional ecology of fish: current approaches and future challenges. Aquatic Sciences, 2017, 79,

6 Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters, 2011, 14, 325-334.

8 Homogenization patterns of the worldâ $€^{T M}$ s freshwater fish faunas. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18003-18008.
$9 \quad$ A global database on freshwater fish species occurrence in drainage basins. Scientific Data, 2017, 4,
170141.
Unlocking biodiversity and conservation studies in highấdiversity environments using environmenta
DNA (eDNA): A test with Guianese freshwater fishes. Molecular Ecology Resources, 2019, 19, 27-46.
11 Functional homogenization exceeds taxonomic homogenization among <scp>E</scp > uropean fish
assemblages. Global Ecology and Biogeography, 2014, 23, 1450-1460.
4.8

135

Scientific uncertainty and the assessment of risks posed by nonâ€native freshwater fishes. Fish and
Fisheries, 2009, 10, 88-97.
$5.3 \quad 121$
$5.8 \quad 127$

13 Global imprint of historical connectivity on freshwater fish biodiversity. Ecology Letters, 2014, 17,
6.4

121

14 Erosion of global functional diversity across the tree of life. Science Advances, 2021, 7, .

[^1]2.5

112
19
20

> Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecological Modelling, 2001, 146, 159-166.
2.5

98

Competitive interactions between native and exotic salmonids: a combined field and laboratory demonstration. Ecology of Freshwater Fish, 2007, 16, 133-143.
1.4

97
Rapid evaluation of threats to biodiversity: human footprint score and large vertebrate species
responses in French Guiana. Biodiversity and Conservation, 2010, 19, 1567-1584.

$22 \quad$| Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. |
| :--- |
| Scientific Reports, 2019, 9, 3085. |

$2.6 \quad 96$

Scientific Reports, 2019, 9, 3085.
3.3

93

Hydrological disturbance benefits a native fish at the expense of an exotic fish. Journal of Applied
Ecology, 2006, 43, 930-939.
$4.0 \quad 91$

24 A scenario for impacts of water availability loss due to climate change on riverine fish extinction rates. Journal of Applied Ecology, 2013, 50, 1105-1115.
4.0

90

Assessment of large-vertebrate species richness and relative abundance in Neotropical forest using
line-transect censuses: what is the minimal effort required?. Biodiversity and Conservation, 2008, 17,
2627-2644.

Nonâ€native species disrupt the worldwide patterns of freshwater fish body size: implications for
Bergmannâ $€^{\mathrm{TM}}$ s rule. Ecology Letters, 2010, 13, 421-431.
6.4

88

27 Anthropogenic stressors and riverine fish extinctions. Ecological Indicators, 2017, 79, 37-46.
6.3

80

28 Patterns and processes of global riverine fish endemism. Global Ecology and Biogeography, 2012, 21, 977-987.
5.8

75

```
29 Nonâ€native species led to marked shifts in functional diversity of the world freshwater fish faunas.
Ecology Letters, 2018, 21, 1649-1659.
```

$6.4 \quad 74$

30 Fish-SPRICH: a database of freshwater fish species richness throughout the World. Hydrobiologia,
2013, 700, 343-349.
2.0

73
Seventyâ€five years of biodiversity decline of fish assemblages in Chinese isolated plateau lakes:
31 widespread introductions and extirpations of narrow endemics lead to regional loss of dissimilarity.
$4.1 \quad 73$
Diversity and Distributions, 2017, 23, 171-184.
32 Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient.
Diversity and Distributions, 2008, 14, 592-603.
4.1

72

33 Drainage network position and historical connectivity explain global patterns in freshwater fishesâ€ $\mathrm{TM}^{\mathrm{TM}}$
33 range size. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,
7.1

13434-13439.
Worldwide freshwater fish homogenization is driven by a few widespread non-native species.
2.4

63

35 Title is missing!. Biodiversity and Conservation, 2003, 12, 2057-2075.
2.6
37
38
Geographic isolation and climate govern the functional diversity of native fish communities in
European drainage basins. Global Ecology and Biogeography, 2012, 21, 1083-1095.
5.8

55

A comprehensive examination of the network position hypothesis across multiple river metacommunities. Ecography, 2019, 42, 284-294.
4.5

54
39 The combined effects of climate change and river fragmentation on the distribution of Andean
9.5

Amazon fishes. Global Change Biology, 2020, 26, 5509-5523.
50

Broad-scale determinants of non-native fish species richness are context-dependent. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2385-2394.
2.6

49

41
Identifying climatic niche shifts using coarse-grained occurrence data: a test with non-native
freshwater fish. Global Ecology and Biogeography, 2011, 20, 407-414.
5.8

Effects of damming on population sustainability of Chinese sturgeon, Acipenser sinensis: evaluation
of optimal conservation measures. Environmental Biology of Fishes, 2009, 86, 325-336.
1.0

48

43	FISHMORPH: A global database on morphological traits of freshwater fishes. Clobal Ecology and Biogeography, 2021, 30, 2330-2336.
44	Historical assemblage distinctiveness and the introduction of widespread nonâ€native species exp worldwide changes in freshwater fish taxonomic dissimilarity. Global Ecology and Biogeography, 2014, 23, 574-584.
45	Fish assemblage patterns in the littoral zone of a European reservoir. Freshwater Biology, 2007, 52 448-458.
46	Regional <i>vs</i> local drivers of phylogenetic and species diversity in stream fish communities.

Freshwater Biology, 2014, 59, 450-462.
2.4

43

```
47 Modelling roach (Rutilus rutilus) microhabitat using linear and nonlinear techniques. Freshwater
Biology, 2000, 44, 441-452.
```

$2.4 \quad 41$

Nested patterns of spatial diversity revealed for fish assemblages in a west European river. Ecology of
Freshwater Fish, 2005, 14, 233-242.
1.4

41

Macroinvertebrate richness patterns in North African streams. Journal of Biogeography, 2003, 30,
3.0

40
$49 \quad$ 1821-1833.

Behaviour of roach (Rutilus rutilus L.) altered by Ligula intestinalis (Cestoda: Pseudophyllidea): a
2.4

39
field demonstration. Freshwater Biology, 2001, 46, 1219-1227.

Taxonomic and functional diversity patterns reveal different processes shaping European and
Amazonian stream fish assemblages. Journal of Biogeography, 2016, 43, 1832-1843.
3.0

Comparing the performance of 12 S mitochondrial primers for fish environmental DNA across
5.8
ecosystems. Environmental DNA, 2021, 3, 1113-1127.
38

Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across
the world. Nature Communications, $2021,12,5162$.
12.8

38

Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish
 1.5 assemblages. Aquatic Sciences, 2016, 78, 315-325.

Morphological diversity of freshwater fishes differs between realms, but morphologically extreme

61	From current distinctiveness to future homogenization of the world's freshwater fish faunas. Diversity and Distributions, 2015, 21, 223-235.	4.1	32
62	Electrofishing efficiency in low conductivity neotropical streams: towards a nonâ€destructive fish sampling method. Fisheries Management and Ecology, 2014, 21, 234-243.	2.0	31
63	Advances and prospects of environmental DNA in neotropical rainforests. Advances in Ecological Research, 2020, , 331-373.	2.7	27
64	Relationships between Environmental Characteristics and the Density of Age-0 Eurasian PerchPerca fluviatilisin the Littoral Zone of a Lake: A Nonlinear Approach. Transactions of the American Fisheries Society, 2002, 131, 1033-1043.	1.4	26
65	A global database of nitrogen and phosphorus excretion rates of aquatic animals. Ecology, 2017, 98, 1475-1475.	3.2	26
66	Local rise of phylogenetic diversity due to invasions and extirpations leads to a regional phylogenetic homogenization of fish fauna from Chinese isolated plateau lakes. Ecological Indicators, 2019, 101, 388-398.	6.3	26
67	Spatio-temporal patterns of fish assemblages in coastal West African rivers: a self-organizing map approach. Aquatic Living Resources, 2006, 19, 361-370.	1.2	25
68	Disentangling spatial and environmental determinants of fish species richness and assemblage structure in Neotropical rainforest streams. Freshwater Biology, 2017, 62, 1707-1720.	2.4	25
69	Spatial mismatch in morphological, ecological and phylogenetic diversity, in historical and contemporary European freshwater fish faunas. Ecography, 2018, 41, 1665-1674.	4.5	23
70	Microsatellites assessment of Chinese sturgeon (Acipenser sinensis Cray) genetic variability. Journal of Applied Ichthyology, 2005, 21, 7-13.	0.7	22
71	Measuring changes in taxonomic dissimilarity following species introductions and extirpations. Ecological Indicators, 2012, 18, 552-558.	6.3	22
72	Measuring ecosystem degradation through half a century of fish species introductions and extirpations in a large isolated lake. Ecological Indicators, 2015, 58, 104-112.	6.3	22

Intraâ€ 73 Biond interspecific differences in nutrient recycling by European freshwater fish. Freshwater
Biol2,57, 2330-2341.

75 Is scuba sampling a relevant method to study fish microhabitat in lakes? Examples and comparisons for

Characterizing the spatial signal of environmental DNA in river systems using a community ecology

```
79 Morphological sorting of introduced freshwater fish species within and between donor realms.
Global Ecology and Biogeography, 2020, 29, 803-813.
```

```81 Dealing with Noisy Absences to Optimize Species Distribution Models: An Iterative Ensemble Modelling
```

83 Contemporary environment and historical legacy explain functional diversity of freshwater fishes in the world rivers. Global Ecology and Biogeography, 2022, 31, 700-713.
5.8 14Encounter rate between local populations shapes host selection in complex parasite life cycle.84 Biological Journal of the Linnean Society, 2006, 89, 99-106.1.613

85
Fish spatial distribution in the littoral zone of Lake Pareloup (France) during summer. Fundamental 0.7 13 and Applied Limnology, 2001, 153, 129-144.

Role of fish communities in particulate organic matter fluxes between salt marshes and coastal marine waters in the Mont Saint-Michel Bay. , 1998, , 121-133.

```
        Temporal Dynamics of Fish Assemblages as a Reflection of Policy Shift from Fishing Concession to89 Co-Management in One of the Worldâ€ \(€^{T M}\) s Largest Tropical Flood Pulse Fisheries. Water (Switzerland),
2020, 12, 2974.
```2.711
91
92

> Determinants of fish assemblage structure in Mount ItoupÃ© mountain streams (French Guiana).
> Annales De Limnologie, 2013, 49, 43-49.
0.6

10

The iterative ensemble modelling approach increases the accuracy of fish distribution models.
Ecography, 2015, 38, 213-220.
4.5

10
A diagnosis-based approach to assess specific risks of river degradation in a multiple pressure context:
Insights from fish communities. Science of the Total Environment, 2020, 734,139467 .
Species composition and temporal pattern of fish passing through the navigation locks in the middle
reach of Yangtze River: implications for fish conservation. Journal of Applied Ichthyology, 2013, 29,
\(8.0 \quad 10\)

Species composition and temporal pattern of fish passing through the navigation locks in the middle
94 reach of Yangtze River: implications for fish conservation. Journal of Applied Ichthyology, 2013, 29,
\(0.7 \quad 9\)
1441-1444.

Global patterns and predictors of trophic position, body size and jaw size in fishes. Global Ecology
and Biogeography, 2021, 30, 414-428.
\(5.8 \quad 9\)

96 Aquatic Insect Assemblage Patterns in Four West-African Coastal Rivers. Journal of Biological
\(0.3 \quad 9\)
Sciences, 2007, 7, 1130-1138.

Unraveling the dietary diversity of Neotropical top predators using scat DNA metabarcoding: A case
study on the elusive Giant Otter. Environmental DNA, 2021, 3, 889-900.

The influence of the invasive black bullhead <i>Ameiurus melas </i> on the predatory efficiency of pike <i>Esox lucius </i>L.. Journal of Fish Biology, 2008, 73, 196-205.
<scp>NEOTROPICAL FRESHWATER FISHES</scp>: A dataset of occurrence and abundance of freshwater
fishes in the Neotropics. Ecology, 2023, 104, e3713.

Changes in roach (Rutilus rutilus L.) population structure induced on draining a large reservoir.
Comptes Rendus De L'AcadÃ@mie Des Sciences SÃ@rie 3, Sciences De La Vie, 1999, 322, 331-338.
0.8

4
101 Fishes of the Mitaraka Mountains (French Guiana). Zoosystema, 2019, 40, 131.

0.6

4

102 Threatened fishes of the world: Acipenser dabryanus DumÃ@ril, 1869. Environmental Biology of Fishes, 2009, 85, 117-118.
\(1.0 \quad 3\)

103 Length-weight relationships of 58 fish species in French Guiana streams. Journal of Applied Ichthyology, 2015, 31, 567-570.
\(0.7 \quad 3\)

Aquarium trade and fish farms as a source of non-native freshwater fish introductions in French

Threatened fishes of the World: Acipenser sinensis Gray, 1834 (Acipenseriformes: Acipenseridae).
105 Environmental Biology of Fishes, 2009, 84, 183-184.
1.0

Threatened fishes of the world: Psephurus gladius (Martens, 1862) (Acipenseriformes: polyodontidae). Environmental Biology of Fishes, 2009, 84, 421-422.

Anear
Linear and non-linear methods to predict the microhabitat of 0+ roach (<i>Rutilus rutilus</i> L.) in
109 the littoral zone of a large reservoir. Verhandlungen Der Internationalen Vereinigung Fur
Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnoloog 2000, 27 811-814.

Elaboration of a biotic index of pollution using macroinvertebrates for the monitoring of Lake NokouÃ© in Benin. International Journal of Biological and Chemical Sciences, 2016, 9, 2987.
\(\qquad\)```

[^0]: Source: https:/|exaly.com/author-pdf/4148142/publications.pdf
 Version: 2024-02-01

[^1]: 15 The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecological Modelling, 1999, 120, 299-311.
 ,

