
Malcolm K Brenner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4147177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Donor-derived multiple leukemia antigen–specific T-cell therapy to prevent relapse after transplantÂin patients with ALL. Blood, 2022, 139, 2706-2711.	1.4	13
2	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	1.4	14
3	Combinatorial antigen targeting strategies for acute leukemia: application in myeloid malignancy. Cytotherapy, 2022, 24, 282-290.	0.7	4
4	A phase I/II study of LOAd703, a TMZ-CD40L/4-1BBL-armed oncolytic adenovirus, combined with nab-paclitaxel and gemcitabine in advanced pancreatic cancer Journal of Clinical Oncology, 2022, 40, 4138-4138.	1.6	10
5	Engineered off-the-shelf therapeutic T cells resist host immune rejection. Nature Biotechnology, 2021, 39, 56-63.	17.5	71
6	Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood, 2021, 137, 2585-2597.	1.4	38
7	Oncolytic adeno-immunotherapy modulates the immune system enabling CAR T-cells to cure pancreatic tumors. Communications Biology, 2021, 4, 368.	4.4	23
8	Taking T-Cell Oncotherapy Off-the-Shelf. Trends in Immunology, 2021, 42, 261-272.	6.8	14
9	Reversal of exhaustion in engineered T cells. Science, 2021, 372, 34-35.	12.6	3
10	T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. Journal of Clinical Oncology, 2021, 39, 1415-1425.	1.6	30
11	Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Molecular Therapy, 2021, 29, 1808-1820.	8.2	34
12	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
13	Safety and Efficacy of Off-the-Shelf CD30.CAR-Modified Epstein-Barr Virus-Specific T Cells in Patients with CD30-Positive Lymphoma. Blood, 2021, 138, 1763-1763.	1.4	6
14	Early Signals of Anti-Tumor Efficacy and Safety with Autologous CD5.CAR T-Cells in Patients with Refractory/Relapsed T-Cell Lymphoma. Blood, 2021, 138, 654-654.	1.4	9
15	Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nature Communications, 2020, 11, 3549.	12.8	103
16	Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. Journal of Clinical Oncology, 2020, 38, 3794-3804.	1.6	235
17	The safety and clinical effects of administering a multiantigen-targeted T cell therapy to patients with multiple myeloma. Science Translational Medicine, 2020, 12, .	12.4	25
18	Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute		29

2

#	Article	IF	CITATIONS
19	Transgenic CD8αβ co-receptor rescues endogenous TCR function in TCR-transgenic virus-specific T cells. , 2020, 8, e001487.		10
20	Oncolytic Adenovirus Armed with BiTE, Cytokine, and Checkpoint Inhibitor Enables CAR T Cells to Control the Growth of Heterogeneous Tumors. Molecular Therapy, 2020, 28, 1251-1262.	8.2	89
21	Single-cell transcriptomics identifies multiple pathways underlying antitumor function of TCR- and CD8αβ-engineered human CD4 ⁺ T cells. Science Advances, 2020, 6, eaaz7809.	10.3	24
22	Combinatorial Antigen Targeting Strategy for Acute Myeloid Leukemia. Blood, 2020, 136, 22-23.	1.4	2
23	A Bank of CD30.CAR-Modified, Epstein-Barr Virus-Specific T Cells That Lacks Host Reactivity and Resists Graft Rejection for Patients with CD30-Positive Lymphoma. Blood, 2020, 136, 16-16.	1.4	6
24	T-Cell Receptor Stimulation Enhances the Expansion and Function of CD19 Chimeric Antigen Receptor–Expressing T Cells. Clinical Cancer Research, 2019, 25, 7340-7350.	7.0	32
25	Adoptive Cell Therapy: ACT-Up or ACT-Out?. Molecular Therapy, 2019, 27, 693-694.	8.2	3
26	Allogeneic hematopoietic stem cell transplant for relapsed and refractory non-Hodgkin lymphoma in pediatric patients. Blood Advances, 2019, 3, 2689-2695.	5.2	9
27	CD7 CAR T Cells for the Therapy of Acute Myeloid Leukemia. Molecular Therapy, 2019, 27, 272-280.	8.2	97
28	Safety and Anti-Tumor Activity of CD5 CAR T-Cells in Patients with Relapsed/Refractory T-Cell Malignancies. Blood, 2019, 134, 199-199.	1.4	53
29	Single Cell RNA Sequencing Identifies Transcriptional Programs That Enhance Anti-Tumor Function of Transgenic CD4+ T Cells Redirected with TCR and CD8î±î². Blood, 2019, 134, 250-250.	1.4	0
30	High Incidence of Autoimmune Disease after Hematopoietic Stem Cell Transplantation for Chronic Granulomatous Disease. Biology of Blood and Marrow Transplantation, 2018, 24, 1643-1650.	2.0	24
31	Seek and You Will Not Find: Ending the Hunt for Replication-Competent Retroviruses during Human Gene Therapy. Molecular Therapy, 2018, 26, 1-2.	8.2	5
32	Current Allogeneic Hematopoietic Stem Cell Transplantation for Pediatric Acute Lymphocytic Leukemia: Success, Failure and Future Perspectives—A Single-Center Experience, 2008 to 2016. Biology of Blood and Marrow Transplantation, 2018, 24, 1424-1431.	2.0	15
33	Reversible Transgene Expression Reduces Fratricide and Permits 4-1BB Costimulation of CAR T Cells Directed to T-cell Malignancies. Cancer Immunology Research, 2018, 6, 47-58.	3.4	93
34	Outcomes after Allogeneic Transplant in Patients with Wiskott-Aldrich Syndrome. Biology of Blood and Marrow Transplantation, 2018, 24, 537-541.	2.0	21
35	Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 1128-1139.	1.6	137
36	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	1.4	49

MALCOLM K BRENNER

#	Article	IF	CITATIONS
37	InÂVivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin's Lymphomas. Molecular Therapy, 2018, 26, 2727-2737.	8.2	180
38	CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. , 2018, 6, 34.		85
39	A Phase I/IIa Trial Using CD19-Targeted Third-Generation CAR T Cells for Lymphoma and Leukemia. Clinical Cancer Research, 2018, 24, 6185-6194.	7.0	177
40	Enhancing the Potency and Specificity of Engineered T Cells for Cancer Treatment. Cancer Discovery, 2018, 8, 972-987.	9.4	93
41	CD30-Chimeric Antigen Receptor (CAR) T Cells for Therapy of Hodgkin Lymphoma (HL). Blood, 2018, 132, 680-680.	1.4	20
42	Onward and upward for immuno-oncology. Chinese Clinical Oncology, 2018, 7, 18-18.	1.2	0
43	Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Molecular Therapy, 2017, 25, 249-258.	8.2	217
44	Armed Oncolytic Adenovirus–Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Research, 2017, 77, 2040-2051.	0.9	170
45	HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncology, 2017, 3, 1094.	7.1	608
46	CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood, 2017, 130, 285-296.	1.4	326
47	CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Molecular Therapy, 2017, 25, 2214-2224.	8.2	378
48	Immunotherapy against cancer-related viruses. Cell Research, 2017, 27, 59-73.	12.0	101
49	c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals. Blood, 2017, 130, 2739-2749.	1.4	8
50	Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Molecular Therapy, 2017, 25, 2440-2451.	8.2	151
51	Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. Cell Reports, 2017, 21, 17-26.	6.4	203
52	Next Steps in the CAR Journey of a Thousand Miles. Molecular Therapy, 2017, 25, 2226-2227.	8.2	9
53	Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discovery, 2017, 7, 1238-1247.	9.4	204
54	Treatment of Acute Myeloid Leukemia with T Cells Expressing Chimeric Antigen Receptors Directed to C-type Lectin-like Molecule 1. Molecular Therapy, 2017, 25, 2202-2213.	8.2	109

#	Article	IF	CITATIONS
55	Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. Journal of Clinical Investigation, 2017, 127, 3462-3471.	8.2	301
56	Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 3547-3557.	1.6	367
57	Multiple mechanisms determine the sensitivity of human-induced pluripotent stem cells to the inducible caspase-9 safety switch. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16003.	4.1	15
58	GD2-specific CAR T Cells Undergo Potent Activation and Deletion Following Antigen Encounter but can be Protected From Activation-induced Cell Death by PD-1 Blockade. Molecular Therapy, 2016, 24, 1135-1149.	8.2	281
59	Improving the safety of T-Cell therapies using an inducible caspase-9 gene. Experimental Hematology, 2016, 44, 1013-1019.	0.4	50
60	Fine-tuning the CAR spacer improves T-cell potency. Oncolmmunology, 2016, 5, e1253656.	4.6	137
61	3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the inÂvivo effect of oncolytic adenovirus. Biomaterials, 2016, 84, 76-85.	11.4	56
62	Clonal Dynamics In Vivo of Virus Integration Sites of T Cells Expressing a Safety Switch. Molecular Therapy, 2016, 24, 736-745.	8.2	11
63	Serial Activation of the Inducible Caspase 9 Safety Switch After Human Stem Cell Transplantation. Molecular Therapy, 2016, 24, 823-831.	8.2	30
64	CAR-T Cell Therapy for Lymphoma. Annual Review of Medicine, 2016, 67, 165-183.	12.2	123
65	Direct Comparison of In Vivo Fate of Second and Third-Generation CD19-Specific Chimeric Antigen Receptor (CAR)-T Cells in Patients with B-Cell Lymphoma: Reversal of Toxicity from Tonic Signaling. Blood, 2016, 128, 1851-1851.	1.4	22
66	CD7 CAR for the Treatment of Acute Myeloid and Lymphoid Leukemia. Blood, 2016, 128, 4555-4555.	1.4	5
67	Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood, 2015, 125, 3905-3916.	1.4	260
68	An Inducible Caspase-9 Suicide Gene to Improve the Safety of Therapy Using Human Induced Pluripotent Stem Cells. Molecular Therapy, 2015, 23, 1475-1485.	8.2	85
69	Outcomes after Second Hematopoietic Stem Cell Transplantations in Pediatric Patients with Relapsed Hematological Malignancies. Biology of Blood and Marrow Transplantation, 2015, 21, 1266-1272.	2.0	24
70	Mesenchymal Stromal Cells for Linked Delivery of Oncolytic and Apoptotic Adenoviruses to Non-small-cell Lung Cancers. Molecular Therapy, 2015, 23, 1497-1506.	8.2	28
71	A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 2015, 126, 983-992.	1.4	248
72	Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood, 2015, 125, 4103-4113.	1.4	188

MALCOLM K BRENNER

#	Article	IF	CITATIONS
73	Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. Journal of Clinical Oncology, 2015, 33, 1688-1696.	1.6	778
74	A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy. Stem Cell Reports, 2015, 5, 597-608.	4.8	61
75	Third Generation CD19-CAR T Cells for Relapsed and Refractory Lymphoma and Leukemia Report from the Swedish Phase I/IIa Trial. Blood, 2015, 126, 1534-1534.	1.4	9
76	Safety of Multiple Doses of CAR T Cells. Blood, 2015, 126, 4425-4425.	1.4	5
77	Autologous HER2 CMV bispecific CAR T cells for progressive glioblastoma: Results from a phase I clinical trial Journal of Clinical Oncology, 2015, 33, 3008-3008.	1.6	44
78	Matched Unrelated Allogeneic Stem Cell Transplantation for Patients with Congenital Amegakaryocytic Thrombocytopenia: Texas Children`s Hospital Experience. Blood, 2015, 126, 5529-5529.	1.4	0
79	Adoptively-Transferred EBV-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic HSCT Recipients - a Single Center Experience Spanning 22 Years. Blood, 2015, 126, 1926-1926.	1.4	0
80	Reversal of Tumor Immune Inhibition Using a Chimeric Cytokine Receptor. Molecular Therapy, 2014, 22, 1211-1220.	8.2	145
81	Systemic Inflammatory Response Syndrome After Administration of Unmodified T Lymphocytes. Molecular Therapy, 2014, 22, 1134-1138.	8.2	28
82	Activity of Broad-Spectrum T Cells as Treatment for AdV, EBV, CMV, BKV, and HHV6 Infections after HSCT. Science Translational Medicine, 2014, 6, 242ra83.	12.4	357
83	Engineered T cells for cancer treatment. Cytotherapy, 2014, 16, 713-733.	0.7	18
84	Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Therapy, 2014, 21, 472-482.	4.6	37
85	Gene-Modified Cells for Stem Cell Transplantation and Cancer Therapy. Human Gene Therapy, 2014, 25, 563-569.	2.7	5
86	Kinetics of Tumor Destruction by Chimeric Antigen Receptor-modified T Cells. Molecular Therapy, 2014, 22, 623-633.	8.2	113
87	T Cells Expressing CD19-Specific Chimeric Antigen Receptors Are Inhibited By Indoleamine 2,3-Dioxygenase in Tumors. Blood, 2014, 124, 2434-2434.	1.4	0
88	ls cancer gene therapy an empty suit?. Lancet Oncology, The, 2013, 14, e447-e456.	10.7	48
89	CAR T Cells for Acute Myeloid Leukemia: The LeY of the Land. Molecular Therapy, 2013, 21, 1983-1984.	8.2	8
90	Clinical Responses In Patients Infused With T Lymphocytes Redirected To Target κ-Light Immunoglobulin Chain. Blood, 2013, 122, 506-506.	1.4	6

#	Article	IF	CITATIONS
91	A "non-fratricidal―αβ- T Cell Receptor That Targets Survivin Expressed By Hematological Malignancies. Blood, 2013, 122, 141-141.	1.4	0
92	Multicenter Study of "off-the-Shelf―Third Party Virus-Specific T Cells (VSTs) to Treat Adenovirus (Adv), Cytomegalovirus (CMV) or Epstein Barr Virus (EBV) Infection After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2012, 120, 457-457.	1.4	2
93	Fresh Ex Vivo Expanded Natural Killer Cells Demonstrate Robust Proliferation in Vivo in High-Risk Relapsed Multiple Myeloma (MM) Patients. Blood, 2012, 120, 579-579.	1.4	2
94	Human papillomavirus type 16 (HPV16) E6/E7-specific cytotoxicÂT lymphocytes (CTL) for immunotherapy of HPV-associated cancer (Ca) Journal of Clinical Oncology, 2012, 30, 2558-2558.	1.6	0
95	Expanded Natural Killer (NK) Cells for Immunotherapy: Fresh and Made to Order. Blood, 2012, 120, 1912-1912.	1.4	0
96	Safety and Clinical Efficacy of Rapidly-Generated Trivirus-Directed T Cells After Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2012, 120, 223-223.	1.4	25
97	Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Molecular Therapy, 2011, 19, 2258-2268.	8.2	80
98	Human Papillomavirus Type 16 (HPV16) E6/E7-Specific Cytotoxic T Lymphocytes (CTLs) for Immunotherapy of HPV-Associated Malignancies. Blood, 2011, 118, 1913-1913.	1.4	0
99	Adoptive T cell therapy of cancer. Current Opinion in Immunology, 2010, 22, 251-257.	5.5	111
100	Overview of gene therapy clinical progress including cancer treatment with gene-modified T cells. Hematology American Society of Hematology Education Program, 2009, 2009, 675-681.	2.5	12
101	An Inducible Caspase 9 Suicide Gene to Improve the Safety of Mesenchymal Stromal Cell Therapies Blood, 2009, 114, 1444-1444.	1.4	0
102	Rapid High Titer Retroviral Production Using a Concentrated Retrovirus Expansion Device (CRED) Blood, 2009, 114, 2468-2468.	1.4	0
103	Developing T-Cell Therapies for Cancer in an Academic Setting. Advances in Experimental Medicine and Biology, 2008, 610, 88-99.	1.6	3
104	Monoculture-Derived T Lymphocytes Providing Multiple Virus Specificity and Anti-Leukemia Activity for Recipients of Hematopietic Stem Cells or Umbilical Cord Blood Transplants. Blood, 2008, 112, 3909-3909.	1.4	1
105	Generation of Epstein Barr Virus Specific Cytotoxic T Lymphocytes (EBVCTLs) Resistant to the Immunosuppressive Drug Tacrolimus (FK506). Blood, 2008, 112, 3536-3536.	1.4	0
106	Complete Tumor Responses in Lymphoma Patients Who Receive Autologous Cytotoxic T Lymphocytes Targeting EBV Latent Membrane Proteins. Blood, 2008, 112, 230-230.	1.4	0
107	The "Side-Population―of Human Lymphoma Cells Have Increased Chemo-Resistance, Stem-Cell Like Properties and Are Potential Targets for Immunotherapy. Blood, 2008, 112, 2620-2620.	1.4	0
108	Selective Loss of a Putative Precursor Population of B-Chronic Lymphocytic Leukemia Cells Following Immunization with hCD40L/IL-2 Expressing Autologous Tumor Cells. Blood, 2008, 112, 3172-3172.	1.4	0

#	Article	IF	CITATIONS
109	Vaccination Strategies for Patients with B-CLL Blood, 2008, 112, 2106-2106.	1.4	Ο
110	Exploiting Cytokine Secretion to Rapidly Produce Multivirus-Specific T Cells for Adoptive Immunotherapy. Blood, 2008, 112, 4594-4594.	1.4	0
111	Polyclonal PRAME-Specific Cytotoxic T Lymphocytes Generated Using Protein-Spanning Pools of Overlapping Pentadecapeptides Target Chronic Myeloid Leukemia. Blood, 2008, 112, 3899-3899.	1.4	0
112	Gene transfer: methods and applications. , 2006, , 661-678.		0
113	Generation and Expansion of PRAME-Specific Cytotoxic T-Lymphocytes for Adoptive T-Cell Therapy of Hematological Malignancies Blood, 2006, 108, 2205-2205.	1.4	Ο
114	Immune Responses Are Induced Against Side-Population B-CLL "Stem Cells ―by Patient Vaccination with hCD40L/IL2 Gene Modified Tumor Cells Blood, 2006, 108, 2552-2552.	1.4	0
115	Leukemia Targeting Via Cytotoxic T Cells Expressing a CD33 Specific Chimeric Receptor Blood, 2006, 108, 453-453.	1.4	0
116	Transgenic Expression of IL15 Selectively Expands Antigen Specific Cytotoxic T Cells (CTLs) Enhancing Their Anti-Tumor Effect In Vivo Blood, 2006, 108, 1721-1721.	1.4	0
117	Transgenic Expression of Inducible Caspase9 Suicide Gene for In Vivo Elimination of Antigen Specific Cytotoxic T Cells (CTLs) Engineered To Produce Cytokines Blood, 2006, 108, 137-137.	1.4	Ο
118	Improved Homing of Antigen-Specific T Cells to Hodgkin's Disease (HD) Tumor Cells by Forced Expression of CCR4 Receptor Blood, 2006, 108, 472-472.	1.4	0
119	A Practical Approach for Achieving Clinical Immunotherapy of CLL with hCD40L- and hIL-2-Expressing Autologous Tumor Cells Blood, 2005, 106, 450-450.	1.4	2
120	Outcome of Alternative Donor Transplantation for Severe Aplastic Anemia Can Be Comparable to Outcome with Matched Related Donors Blood, 2005, 106, 2052-2052.	1.4	0
121	Transplantation from Matched Unrelated Donors (MUD) for Thalassemia and Other Congenital Red Cell Disorders Blood, 2005, 106, 2746-2746.	1.4	Ο
122	The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma Blood, 2005, 106, 773-773.	1.4	0
123	Haematopoietic stem cell transplantation for autoimmune disease: limits and future potential. Best Practice and Research in Clinical Haematology, 2004, 17, 359-374.	1.7	18
124	Three-Module Signaling Endo-Domain Artifical T-Cell Receptor Which Transmits CD28, OX40 and CD3-ζ Signals Enhances IL-2 Release and Proliferative Response in Transduced Primary T-Cells Blood, 2004, 104, 1747-1747.	1.4	2
125	Immunotherapy of Chronic Lymphocytic Leukemia using CD40L and IL2 Expressing Autologous Tumor Cells Blood, 2004, 104, 768-768.	1.4	2
126	LMP2-Cytotoxic T Lymphocyte Therapy for Relapsed EBV Positive Lymphoma Blood, 2004, 104, 3276-3276.	1.4	2

MALCOLM K BRENNER

#	Article	IF	CITATIONS
127	Fas Down-Modulation in Epstein Barr Virus (EBV)-Specific Cytotoxic T-Lymphocytes (CTLs) Reduces Their Sensitivity to Fas/Fasl-Induced Apoptosis Blood, 2004, 104, 2647-2647.	1.4	0
128	Retrovirus-Transduced T Cell Blasts Have Not Only Antigen-Presenting Capabilities but Also Suppressor Regulatory T Cell-Inducing Capability Blood, 2004, 104, 3855-3855.	1.4	0
129	High Incidence but Low Morbitiy of Early Cytomegalovirus (CMV) Infections Following Reduced Intensity Conditioning (RIC) Allogeneic Stem Cell Transplantation with Alemtuzumab and Ganciclovir Prophylaxis Blood, 2004, 104, 5098-5098.	1.4	0
130	Complementâ€Fixing CD45 Monoclonal Antibodies to Facilitate Stem Cell Transplantation in Mouse and Man. Annals of the New York Academy of Sciences, 2003, 996, 80-88.	3.8	19
131	Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: A potential treatment strategy for Epstein-Barr virus-positive Hodgkin's lymphoma. International Journal of Cancer, 2001, 93, 706-713.	5.1	80
132	Targeting of GD2-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. International Journal of Cancer, 2001, 94, 228-236.	5.1	143
133	Gene-Marking studies of hematopoietic cells. International Journal of Hematology, 2001, 73, 14-22.	1.6	11
134	Transgenic expression of CD40L and interleukin-2 induces an autologous antitumor immune response in patients with non-Hodgkin's lymphoma. Cancer Gene Therapy, 2001, 8, 378-387.	4.6	31
135	Autologous Antileukemic Immune Response Induced by Chronic Lymphocytic Leukemia B Cells Expressing the CD40 Ligand and Interleukin 2 Transgenes. Human Gene Therapy, 2001, 12, 659-670.	2.7	57
136	To be or notch to be. Nature Medicine, 2000, 6, 1210-1211.	30.7	12
137	Gene-marked autologous hematopoietic stem cell transplantation of autoimmune disease. Journal of Clinical Immunology, 2000, 20, 1-9.	3.8	16
138	Transfer of EBV-specific CTL to prevent EBV lymphoma post bone marrow transplant. , 1999, 14, 154-156.		29
139	Retinoblastoma Treatment. Science, 1999, 285, 663c-663.	12.6	9
140	Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nature Medicine, 1998, 4, 1253-1260.	30.7	143
141	BMT beats autoimmune disease. Nature Medicine, 1998, 4, 153-155.	30.7	29
142	Administration of Neomycin Resistance Gene Marked EBV Specific Cytotoxic T-Lymphocytes to Patients with Relapsed EBV-Positive Hodgkin Disease. Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas. Human Gene Therapy, 1998, 9, 1237-1250.	2.7	24