Lucia Piacentini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4146567/publications.pdf

Version: 2024-02-01

25 1,423 16 25 papers citations h-index g-index

28 28 28 1552 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature, 2010, 463, 662-665.	27.8	262
2	Heterochromatin protein 1 (HP1) is associated with induced gene expression in <i>Drosophila</i> euchromatin. Journal of Cell Biology, 2003, 161, 707-714.	5.2	200
3	HP1 Controls Telomere Capping, Telomere Elongation, and Telomere Silencing by Two Different Mechanisms in Drosophila. Molecular Cell, 2004, 15, 467-476.	9.7	155
4	Heterochromatin Protein 1 (HP1a) Positively Regulates Euchromatic Gene Expression through RNA Transcript Association and Interaction with hnRNPs in Drosophila. PLoS Genetics, 2009, 5, e1000670.	3.5	128
5	HP1: a functionally multifaceted protein. Current Opinion in Genetics and Development, 2008, 18, 169-174.	3.3	120
6	Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica, 2003, 117, 135-147.	1.1	100
7	Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma, 2014, 123, 345-354.	2.2	91
8	Canalization by Selection of <i>de Novo </i> li>Induced Mutations. Genetics, 2017, 206, 1995-2006.	2.9	40
9	The Hsp70 chaperone is a major player in stress-induced transposable element activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17943-17950.	7.1	40
10	Anti-Inflammatory Activity of A Polyphenolic Extract from Arabidopsis thaliana in In Vitro and In Vivo Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 708.	4.1	34
11	Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Functional Ecology, 2020, 34, 428-441.	3.6	30
12	Yeti, a Drosophila melanogaster essential gene, encodes a protein required for chromatin organization. Journal of Cell Science, 2014, 127, 2577-88.	2.0	27
13	The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma, 2008, 117, 25-39.	2.2	26
14	Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Scientific Reports, 2019, 9, 4372.	3.3	25
15	The human Cranio Facial Development Protein 1 (Cfdp1) gene encodes a protein required for the maintenance of higher-order chromatin organization. Scientific Reports, 2017, 7, 45022.	3.3	24
16	Comparative Genomic Analyses Provide New Insights into the Evolutionary Dynamics of Heterochromatin in Drosophila. PLoS Genetics, 2016, 12, e1006212.	3.5	21
17	The "Special―crystal-Stellate System in Drosophila melanogaster Reveals Mechanisms Underlying piRNA Pathway-Mediated Canalization. Genetics Research International, 2012, 2012, 1-5.	2.0	20
18	Positive regulation of euchromatic gene expression by HP1a. Fly, 2010, 4, 299-301.	1.7	14

#	Article	IF	CITATION
19	Transposable element activation promotes neurodegeneration in a Drosophila model of Huntington's disease. IScience, 2022, 25, 103702.	4.1	14
20	Position Effect Variegation and Viability Are Both Sensitive to Dosage of Constitutive Heterochromatin in Drosophila. G3: Genes, Genomes, Genetics, 2014, 4, 1709-1716.	1.8	13
21	Stress-induced strain and brain region-specific activation of LINE-1 transposons in adult mice. Stress, 2018, 21, 575-579.	1.8	12
22	Neuroprotective Effects of PARP Inhibitors in Drosophila Models of Alzheimer's Disease. Cells, 2022, 11, 1284.	4.1	9
23	Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration. Scientific Reports, 2017, 7, 41559.	3.3	8
24	Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma, 2021, 130, 103-111.	2.2	5
25	A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeres. Chromosoma, 2019, 128, 503-520.	2.2	4