Jing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4146374/publications.pdf

Version: 2024-02-01

		26630	24982
135	12,729	56	109
papers	citations	h-index	g-index
136	136	136	13554
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Blood extracellular vesicles carrying synaptic function―and brain―elated proteins as potential biomarkers for Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 909-923.	0.8	21
2	Astrocytic <scp>VEGFA</scp> : An essential mediator in blood–brainâ€barrier disruption in Parkinson's disease. Glia, 2022, 70, 337-353.	4.9	44
3	α-Synuclein-containing erythrocytic extracellular vesicles: essential contributors to hyperactivation of monocytes in Parkinson's disease. Journal of Neuroinflammation, 2022, 19, 53.	7.2	17
4	Parkinson's Disease Derived Exosomes Aggravate Neuropathology in <scp><i>SNCA</i></scp> * <scp>A53T</scp> Mice. Annals of Neurology, 2022, 92, 230-245.	5. 3	19
5	Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathologica Communications, 2021, 9, 37.	5. 2	8
6	Development of a Sensitive Diagnostic Assay for Parkinson Disease Quantifying α-Synuclein–Containing Extracellular Vesicles. Neurology, 2021, 96, e2332-e2345.	1.1	18
7	Coniferaldehyde attenuates Alzheimer's pathology <i>via</i> activation of Nrf2 and its targets. Theranostics, 2020, 10, 179-200.	10.0	37
8	Immunoregulation of microglial polarization: an unrecognized physiological function of $\hat{l}\pm$ -synuclein. Journal of Neuroinflammation, 2020, 17, 272.	7.2	22
9	Reduced oligodendrocyte exosome secretion in multiple system atrophy involves SNARE dysfunction. Brain, 2020, 143, 1780-1797.	7.6	66
10	Erythrocytic α-synuclein contained in microvesicles regulates astrocytic glutamate homeostasis: a new perspective on Parkinson's disease pathogenesis. Acta Neuropathologica Communications, 2020, 8, 102.	5 . 2	26
11	Phosphoproteomic and Kinomic Signature of Clinically Aggressive Grade I (1.5) Meningiomas Reveals RB1 Signaling as a Novel Mediator and Biomarker. Clinical Cancer Research, 2020, 26, 193-205.	7.0	6
12	Antibody $\hat{a}\in b$ ased methods for the measurement of $\hat{l}\pm\hat{a}\in s$ ynuclein concentration in human cerebrospinal fluid $\hat{a}\in \hat{a}$ method comparison and round robin study. Journal of Neurochemistry, 2019, 149, 126-138.	3.9	44
13	Extracellular microvesicles-derived from microglia treated with unaggregated α-synuclein attenuate mitochondrial fission and toxicity-induced by Parkinsonian toxin MPP+. Biochemical and Biophysical Research Communications, 2019, 517, 642-647.	2.1	13
14	Fine Particulate Matter Exposure and Cerebrospinal Fluid Markers of Vascular Injury. Journal of Alzheimer's Disease, 2019, 71, 1015-1025.	2.6	14
15	New windows into the brain: Central nervous system-derived extracellular vesicles in blood. Progress in Neurobiology, 2019, 175, 96-106.	5.7	121
16	Erythrocytic α-Synuclein as a potential biomarker for Parkinson's disease. Translational Neurodegeneration, 2019, 8, 15.	8.0	65
17	Impact of Pre-Analytical Differences on Biomarkers in the ADNI and PPMI Studies: Implications in the Era of Classifying Disease Based on Biomarkers. Journal of Alzheimer's Disease, 2019, 69, 263-276.	2.6	13
18	Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. Journal of Neurochemistry, 2019, 151, 397-416.	3.9	34

#	Article	IF	CITATIONS
19	Combining clinical and biofluid markers for early Parkinson's disease detection. Annals of Clinical and Translational Neurology, 2018, 5, 109-114.	3.7	10
20	A Longitudinal Study of Total and Phosphorylated α-Synuclein with Other Biomarkers in Cerebrospinal Fluid of Alzheimer's Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2018, 61, 1541-1553.	2.6	29
21	Kinome and phosphoproteome of high-grade meningiomas reveal AKAP12 as a central regulator of aggressiveness and its possible role in progression. Scientific Reports, 2018, 8, 2098.	3.3	42
22	Plasma \hat{l}_{\pm} -synuclein and cognitive impairment in the Parkinson's Associated Risk Syndrome: A pilot study. Neurobiology of Disease, 2018, 116, 53-59.	4.4	29
23	Cerebrospinal fluid αâ€synuclein contributes to the differential diagnosis of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1052-1062.	0.8	34
24	The Transport Mechanism of Extracellular Vesicles at the Blood-Brain Barrier. Current Pharmaceutical Design, 2018, 23, 6206-6214.	1.9	177
25	Mass-Spectrometry-Based Method To Quantify in Parallel Tau and Amyloid β 1–42 in CSF for the Diagnosis of Alzheimer's Disease. Journal of Proteome Research, 2017, 16, 1228-1238.	3.7	30
26	An alphaâ€synuclein MRM assay with diagnostic potential for Parkinson's disease and monitoring disease progression. Proteomics - Clinical Applications, 2017, 11, 1700045.	1.6	9
27	A user's guide for αâ€synuclein biomarker studies in biological fluids: Perianalytical considerations. Movement Disorders, 2017, 32, 1117-1130.	3.9	54
28	Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomarkers in Medicine, 2017, 11, 451-473.	1.4	49
29	Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease?. Acta Neuropathologica Communications, 2017, 5, 71.	5.2	188
30	Cerebrospinal fluid biomarkers for Alzheimer's and vascular disease vary by age, gender, and APOE genotype in cognitively normal adults. Alzheimer's Research and Therapy, 2017, 9, 48.	6.2	38
31	Salivary total α-synuclein, oligomeric α-synuclein and SNCA variants in Parkinson's disease patients. Scientific Reports, 2016, 6, 28143.	3.3	55
32	Preliminary Study of Plasma Exosomal Tau as a Potential Biomarker for Chronic Traumatic Encephalopathy. Journal of Alzheimer's Disease, 2016, 51, 1099-1109.	2.6	146
33	CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 1125-1131.	0.8	154
34	Tau Proteins Cross the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2016, 55, 411-419.	2.6	50
35	Transcriptomic Profiling of Extracellular RNAs Present in Cerebrospinal Fluid Identifies Differentially Expressed Transcripts in Parkinson's Disease. Journal of Parkinson's Disease, 2016, 6, 109-117.	2.8	40
36	Identification of a specific \hat{l} ±-synuclein peptide (\hat{l} ±-Syn 29-40) capable of eliciting microglial superoxide production to damage dopaminergic neurons. Journal of Neuroinflammation, 2016, 13, 158.	7.2	21

#	Article	IF	Citations
37	Alphaâ€Synuclein as a Biomarker for Parkinson's Disease. Brain Pathology, 2016, 26, 410-418.	4.1	217
38	Mortalin is Expressed by Astrocytes and Decreased in the Midbrain of Parkinson's Disease Patients. Brain Pathology, 2016, 26, 75-81.	4.1	18
39	Increased CSF E-Selectin in Clinical Alzheimer's Disease without Altered CSF Aβ 42 and Tau. Journal of Alzheimer's Disease, 2015, 47, 883-887.	2.6	15
40	Cerebrospinal fluid A \hat{l}^2 < sub>42 < /sub> levels and <i>APP < /i> processing pathway genes in Parkinson's disease. Movement Disorders, 2015, 30, 936-944.</i>	3.9	14
41	Identification of Synaptosomal Proteins Binding to Monomeric and Oligomeric α-Synuclein. PLoS ONE, 2015, 10, e0116473.	2.5	63
42	Cerebrospinal Fluid Particles in Alzheimer Disease and Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2015, 74, 672-687.	1.7	33
43	Astrocytic Dynamin-Like Protein 1 Regulates Neuronal Protection against Excitotoxicity in Parkinson Disease. American Journal of Pathology, 2015, 185, 536-549.	3.8	27
44	Diagnostic Values of Cerebrospinal Fluid T-Tau and A $\hat{1}^2$ 42 using Meso Scale Discovery Assays for Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 709-719.	2.6	28
45	Biofluid Biomarkers of Mild Traumatic Brain Injury. JAMA Neurology, 2015, 72, 1103.	9.0	13
46	Group comparison of spatiotemporal dynamics of intrinsic networks in Parkinson's disease. Brain, 2015, 138, 2672-2686.	7.6	24
47	Biomarkers of Parkinson's Disease. Biomarkers in Disease, 2015, , 1009-1030.	0.1	O
48	P2X7 receptor is critical in α-synuclein–mediated microglial NADPH oxidase activation. Neurobiology of Aging, 2015, 36, 2304-2318.	3.1	94
49	Phosphorylated α-synuclein in Parkinson's disease: correlation depends on disease severity. Acta Neuropathologica Communications, 2015, 3, 7.	5. 2	74
50	Fluid biomarkers in multiple system atrophy: A review of the MSA Biomarker Initiative. Neurobiology of Disease, 2015, 80, 29-41.	4.4	71
51	Cerebrospinal Fluid Peptides as Potential Parkinson Disease Biomarkers: A Staged Pipeline for Discovery and Validation*. Molecular and Cellular Proteomics, 2015, 14, 544-555.	3.8	51
52	Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 779-787.	2.3	25
53	CSF tau and tau/A \hat{l}^2 42 predict cognitive decline in Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 271-276.	2.2	81
54	$\hat{l}\pm$ -Synuclein, a chemoattractant, directs microglial migration via H ₂ O ₂ -dependent Lyn phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1926-35.	7.1	123

#	Article	IF	CITATIONS
55	Time-Resolved Proteomic Visualization of Dendrimer Cellular Entry and Trafficking. Journal of the American Chemical Society, 2015, 137, 12772-12775.	13.7	18
56	Cerebral perfusion and cortical thickness indicate cortical involvement in mild Parkinson's disease. Movement Disorders, 2015, 30, 1893-1900.	3.9	42
57	Blood \hat{l} ±-synuclein in agricultural pesticide handlers in central Washington State. Environmental Research, 2015, 136, 75-81.	7.5	6
58	Cerebrospinal Fluid α-Synuclein Predicts Cognitive Decline in Parkinson Disease Progression in the DATATOP Cohort. American Journal of Pathology, 2014, 184, 966-975.	3.8	126
59	Targeted Discovery and Validation of Plasma Biomarkers of Parkinson's Disease. Journal of Proteome Research, 2014, 13, 4535-4545.	3.7	30
60	Alpha synuclein is transported into and out of the brain by the blood–brain barrier. Peptides, 2014, 62, 197-202.	2.4	138
61	Cerebrospinal Fluid \hat{l} ±-Synuclein and Lewy Body-Like Symptoms in Normal Controls, Mild Cognitive Impairment, and Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 1007-1016.	2.6	27
62	Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathologica, 2014, 128, 639-650.	7.7	504
63	Proteomic Analysis of Saliva from Patients with Oral Chronic Graft-Versus-Host Disease. Biology of Blood and Marrow Transplantation, 2014, 20, 1048-1055.	2.0	35
64	Cheek cell–derived α-synuclein and DJ-1 do not differentiate Parkinson's disease from control. Neurobiology of Aging, 2014, 35, 418-420.	3.1	30
65	Low levels of cerebrospinal fluid complement 3 and factor H predict faster cognitive decline in mild cognitive impairment. Alzheimer's Research and Therapy, 2014, 6, 36.	6.2	26
66	Biomarkers of Parkinson's Disease. , 2014, , 1-18.		0
67	Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathologica, 2013, 126, 671-682.	7.7	76
68	CSF α-synuclein improves diagnostic and prognostic performance of CSF tau and Aβ in Alzheimer's disease. Acta Neuropathologica, 2013, 126, 683-697.	7.7	90
69	Biomarkers of Parkinson's disease: current status and future perspectives. Drug Discovery Today, 2013, 18, 155-162.	6.4	52
70	An Update on CSF Biomarkers of Parkinson's Disease. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 161-184.	0.6	5
71	α-Synuclein in Cerebrospinal Fluid of Alzheimer's Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2013, 36, 679-688.	2.6	74
72	Effects of Baseline CSF α-Synuclein on Regional Brain Atrophy Rates in Healthy Elders, Mild Cognitive Impairment and Alzheimer's Disease. PLoS ONE, 2013, 8, e85443.	2.5	16

#	Article	IF	Citations
73	Phosphorylated α-Synuclein in Parkinson's Disease. Science Translational Medicine, 2012, 4, 121ra20.	12.4	223
74	DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Scientific Reports, 2012, 2, 954.	3.3	90
75	Applying bioinformatics to proteomics: Is machine learning the answer to biomarker discovery for PD and MSA?. Movement Disorders, 2012, 27, 1595-1597.	3.9	9
76	DJ-1 and $\hat{l}\pm$ SYN in LRRK2 CSF do not correlate with striatal dopaminergic function. Neurobiology of Aging, 2012, 33, 836.e5-836.e7.	3.1	34
77	Premotor biomarkers for Parkinson's disease - a promising direction of research. Translational Neurodegeneration, 2012, 1, 11.	8.0	54
78	Biochemical premotor biomarkers for Parkinson's disease. Movement Disorders, 2012, 27, 644-650.	3.9	37
79	Mortalin in Neurological Diseases. , 2012, , 139-158.		0
80	Complement 3 and Factor H in Human Cerebrospinal Fluid in Parkinson's Disease, Alzheimer's Disease, and Multiple-System Atrophy. American Journal of Pathology, 2011, 178, 1509-1516.	3.8	97
81	Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 61-64.	2.2	64
82	The Alzheimer's Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer's and Dementia, 2011, 7, 386.	0.8	354
83	CSF \hat{l} ±-synuclein, tau, and amyloid \hat{l}^2 in Parkinson's disease. Lancet Neurology, The, 2011, 10, 681.	10.2	15
84	Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Annals of Neurology, 2011, 69, 570-580.	5.3	371
85	Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson's disease. Brain, 2011, 134, e178-e178.	7.6	196
86	Salivary Tau Species are Potential Biomarkers of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 299-305.	2.6	153
87	Glycoproteomics in neurodegenerative diseases. Mass Spectrometry Reviews, 2010, 29, 79-125.	5.4	99
88	CSF AÎ 2 ₄₂ and tau in Parkinson's disease with cognitive impairment. Movement Disorders, 2010, 25, 2682-2685.	3.9	162
89	Identification of ciliary neurotrophic factor receptor α as a mediator of neurotoxicity induced by αâ€synuclein. Proteomics, 2010, 10, 2138-2150.	2.2	12
90	Biomarkers for Cognitive Impairment in Parkinson Disease. Brain Pathology, 2010, 20, 660-671.	4.1	33

#	Article	IF	Citations
91	SNCA Variant Associated With Parkinson Disease and Plasma α-Synuclein Level. Archives of Neurology, 2010, 67, 1350-6.	4.5	157
92	Using â€~omics' to define pathogenesis and biomarkers of Parkinson's disease. Expert Review of Neurotherapeutics, 2010, 10, 925-942.	2.8	71
93	DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain, 2010, 133, 713-726.	7.6	575
94	Quantitative Proteomic Analysis of Oligodendrogliomas With and Without $1p/19q$ Deletion. Journal of Proteome Research, 2010, 9, 2610-2618.	3.7	12
95	Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson's disease. Neuroscience Letters, 2010, 480, 78-82.	2.1	184
96	Rab11a and HSP90 Regulate Recycling of Extracellular \hat{l} ±-Synuclein. Journal of Neuroscience, 2009, 29, 1480-1485.	3.6	128
97	Biomarker discovery in neurodegenerative diseases: A proteomic approach. Neurobiology of Disease, 2009, 35, 157-164.	4.4	102
98	A role for a novel protein, nucleolin, in Parkinson's disease. Neuroscience Letters, 2009, 459, 11-15.	2.1	39
99	Mass Spectrometry Based Targeted Protein Quantification: Methods and Applications. Journal of Proteome Research, 2009, 8, 787-797.	3.7	349
100	Identification of Glutathione S-Transferase Pi as a Protein Involved in Parkinson Disease Progression. American Journal of Pathology, 2009, 175, 54-65.	3.8	75
101	Identification of proteins in human substantia nigra. Proteomics - Clinical Applications, 2008, 2, 776-782.	1.6	33
102	Proteomic identification of proteins in the human brain: Towards a more comprehensive understanding of neurodegenerative disease. Proteomics - Clinical Applications, 2008, 2, 1484-1497.	1.6	20
103	Proteomics of Human Neurodegenerative Diseases. Journal of Neuropathology and Experimental Neurology, 2008, 67, 923-932.	1.7	31
104	Predominant Release of Lysosomal Enzymes by Newborn Rat Microglia After LPS Treatment Revealed by Proteomic Studies. Journal of Proteome Research, 2008, 7, 2033-2049.	3.7	34
105	Application of Targeted Quantitative Proteomics Analysis in Human Cerebrospinal Fluid Using a Liquid Chromatography Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Tandem Mass Spectrometer (LC MALDI TOF/TOF) Platform. Journal of Proteome Research, 2008, 7, 720-730.	3.7	67
106	CSF Multianalyte Profile Distinguishes Alzheimer and Parkinson Diseases. American Journal of Clinical Pathology, 2008, 129, 526-529.	0.7	248
107	Mortalin: A Protein Associated With Progression of Parkinson Disease?. Journal of Neuropathology and Experimental Neurology, 2008, 67, 117-124.	1.7	77
108	Biomarkers for Alzheimer's disease. Expert Review of Neurotherapeutics, 2007, 7, 1021-1028.	2.8	14

#	Article	IF	Citations
109	Proteomics Identification of Proteins in Human Cortex Using Multidimensional Separations and MALDI Tandem Mass Spectrometer. Molecular and Cellular Proteomics, 2007, 6, 1818-1823.	3.8	44
110	Identification of Novel Proteins Associated with Both \hat{l}_{\pm} -Synuclein and DJ-1. Molecular and Cellular Proteomics, 2007, 6, 845-859.	3.8	153
111	Oligomeric α-synuclein inhibits tubulin polymerization. Biochemical and Biophysical Research Communications, 2007, 356, 548-553.	2.1	86
112	Identification of Proteins Involved in Microglial Endocytosis of \hat{l}_{\pm} -Synuclein. Journal of Proteome Research, 2007, 6, 3614-3627.	3.7	64
113	Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia, 2007, 55, 1178-1188.	4.9	147
114	Proteomics of human cerebrospinal fluid $\hat{a} \in \text{``the good, the bad, and the ugly. Proteomics - Clinical Applications, 2007, 1, 805-819.}$	1.6	48
115	A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics, 2007, 7, 469-473.	2.2	111
116	Proteomic Identification of Novel Proteins in Cortical Lewy Bodies. Brain Pathology, 2007, 17, 139-145.	4.1	194
117	Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells. BMC Neuroscience, 2007, 8, 67.	1.9	45
118	Characterization of Proteome of Human Cerebrospinal Fluid. International Review of Neurobiology, 2006, 73, 29-98.	2.0	28
119	Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. Journal of Alzheimer's Disease, 2006, 9, 293-348.	2.6	362
120	Proteomic biomarker discovery in cerebrospinal fluid for neurodegenerative diseases. Journal of Alzheimer's Disease, 2006, 8, 377-386.	2.6	55
121	Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia, 2006, 53, 567-582.	4.9	56
122	Proteomic Identification of a Stress Protein, Mortalin/mthsp70/GRP75. Molecular and Cellular Proteomics, 2006, 5, 1193-1204.	3.8	220
123	Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. Journal of Alzheimer's Disease, 2005, 7, 125-133.	2.6	160
124	Proteomic determination of widespread detergent insolubility, including \hat{A}^2 but not tau, early in the pathogenesis of Alzheimer's disease. FASEB Journal, 2005, 19, 1923-1925.	0.5	46
125	Microglial Activation Induced by Neurodegeneration. Molecular and Cellular Proteomics, 2005, 4, 1471-1479.	3.8	71
126	Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergentâ€insoluble paired helical filament tau binding protein. FASEB Journal, 2005, 19, 1-12.	0.5	172

#	Article	IF	CITATIONS
127	Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson's disease. Molecular Brain Research, 2005, 134, 119-138.	2.3	126
128	Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiology of Aging, 2005, 26, 207-227.	3.1	162
129	Aggregated αâ€synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB Journal, 2005, 19, 533-542.	0.5	1,065
130	Analysis of α-Synuclein-associated Proteins by Quantitative Proteomics. Journal of Biological Chemistry, 2004, 279, 39155-39164.	3.4	149
131	Manganese ethyleneâ€bisâ€dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. Journal of Neurochemistry, 2003, 84, 336-346.	3.9	201
132	Catalysis of catechol oxidation by metal-dithiocarbamate complexes in pesticides. Free Radical Biology and Medicine, 2002, 33, 1714-1723.	2.9	87
133	Enhancement of Dopaminergic Neurotoxicity by the Mercapturate of Dopamine. Journal of Neurochemistry, 2000, 74, 970-978.	3.9	28
134	Parkinson's Disease Is Associated with Oxidative Damage to Cytoplasmic DNA and RNA in Substantia Nigra Neurons. American Journal of Pathology, 1999, 154, 1423-1429.	3.8	570
135	Secondary Excitotoxicity Contributes to Dopamine-Induced Apoptosis of Dopaminergic Neuronal Cultures. Biochemical and Biophysical Research Communications, 1998, 248, 812-816.	2.1	51