Carmen Chak-Lui Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/414620/publications.pdf

Version: 2024-02-01

64 papers 6,361 citations

39 h-index 62 g-index

65 all docs 65 docs citations

65 times ranked 9841 citing authors

#	Article	IF	CITATIONS
1	RNA N6â€methyladenosine methyltransferaseâ€like 3 promotes liver cancer progression through YTHDF2â€dependent posttranscriptional silencing of SOCS2. Hepatology, 2018, 67, 2254-2270.	7.3	980
2	Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16369-16374.	7.1	375
3	Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature Communications, 2017, 8, 517.	12.8	319
4	The MicroRNA miR-139 Suppresses Metastasis and Progression of Hepatocellular Carcinoma by Down-regulating Rho-Kinase 2. Gastroenterology, 2011, 140, 322-331.	1.3	268
5	Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology, 2012, 56, 622-631.	7. 3	255
6	Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology, 2014, 60, 1645-1658.	7. 3	197
7	Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. Journal of Molecular Medicine, 2012, 90, 803-815.	3.9	191
8	Transketolase counteracts oxidative stress to drive cancer development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E725-34.	7.1	186
9	Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2707-16.	7.1	180
10	Hypoxia-inducible factor–dependent breast cancer–mesenchymal stem cell bidirectional signaling promotes metastasis. Journal of Clinical Investigation, 2013, 123, 189-205.	8.2	171
11	Hypoxia induces myeloidâ€derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C motif) ligand 26. Hepatology, 2016, 64, 797-813.	7.3	170
12	SENP1 promotes hypoxia-induced cancer stemness by HIF-1 \hat{l} ± deSUMOylation and SENP1/HIF-1 \hat{l} ± positive feedback loop. Gut, 2017, 66, 2149-2159.	12.1	141
13	Upâ€regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. Hepatology, 2016, 63, 474-487.	7.3	140
14	Hypoxia-inducible factor–dependent breast cancer–mesenchymal stem cell bidirectional signaling promotes metastasis. Journal of Clinical Investigation, 2013, 123, 1402-1402.	8.2	137
15	Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis. Journal of Hepatology, 2011, 54, 1177-1184.	3.7	136
16	Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nature Communications, 2021, 12, 3684.	12.8	136
17	Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells, 2021, 10, 1715.	4.1	130
18	Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. Hepatology, 2009, 49, 1583-1594.	7.3	122

#	Article	IF	CITATIONS
19	Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. Journal of Hepatology, 2017, 67, 758-769.	3.7	118
20	Induction of Oxidative Stress Through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. Hepatology, 2019, 69, 1768-1786.	7.3	111
21	Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. Journal of Clinical Investigation, 2017, 127, 1856-1872.	8.2	100
22	Hepatocellular Carcinoma Cells Up-regulate PVRL1, Stabilizing PVR and Inhibiting the Cytotoxic T-Cell Response via TIGIT to Mediate Tumor Resistance to PD1 Inhibitors in Mice. Gastroenterology, 2020, 159, 609-623.	1.3	100
23	Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death and Disease, 2019, 10, 934.	6.3	98
24	Downâ€regulation of TIMP2 by HIFâ€1α/miRâ€210/HIFâ€3α regulatory feedback circuit enhances cancer metas in hepatocellular carcinoma. Hepatology, 2016, 64, 473-487.	tasis 7.3	96
25	Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology, 2007, 45, 1129-1138.	7.3	93
26	Sequential alterations of microrna expression in hepatocellular carcinoma development and venous metastasis. Hepatology, 2012, 55, 1453-1461.	7.3	92
27	Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology, 2013, 57, 637-647.	7. 3	90
28	Aberrant Superâ€Enhancer Landscape in Human Hepatocellular Carcinoma. Hepatology, 2019, 69, 2502-2517.	7. 3	90
29	MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis. Oncotarget, 2015, 6, 13658-13670.	1.8	70
30	<scp>YY</scp> 1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. EMBO Journal, 2019, 38, .	7.8	69
31	NDUFA4L2 Fine-tunes Oxidative Stress in Hepatocellular Carcinoma. Clinical Cancer Research, 2016, 22, 3105-3117.	7.0	68
32	Switching of Pyruvate Kinase Isoform L to M2 Promotes Metabolic Reprogramming in Hepatocarcinogenesis. PLoS ONE, 2014, 9, e115036.	2.5	67
33	Deleted in Liver Cancer 1 (DLC1) Negatively Regulates Rho/ROCK/MLC Pathway in Hepatocellular Carcinoma. PLoS ONE, 2008, 3, e2779.	2.5	62
34	The impact of hypoxia in hepatocellular carcinoma metastasis. Frontiers of Medicine, 2014, 8, 33-41.	3.4	62
35	HELLS Regulates Chromatin Remodeling and Epigenetic Silencing of Multiple Tumor Suppressor Genes in Human Hepatocellular Carcinoma. Hepatology, 2019, 69, 2013-2030.	7.3	56
36	PIM1 regulates glycolysis and promotes tumor progression in hepatocellular carcinoma. Oncotarget, 2015, 6, 10880-10892.	1.8	55

#	Article	IF	CITATIONS
37	EZH2-Mediated H3K27me3 Is Involved in Epigenetic Repression of Deleted in Liver Cancer 1 in Human Cancers. PLoS ONE, 2013, 8, e68226.	2.5	45
38	RhoE is frequently down-regulated in hepatocellular carcinoma (HCC) and suppresses HCC invasion through antagonizing the Rho/Rho-Kinase/Myosin phosphatase target pathway. Hepatology, 2013, 57, 152-161.	7.3	42
39	MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility. Frontiers of Medicine, 2015, 9, 331-343.	3.4	42
40	Mechanistic Rationales Guiding Combination Hepatocellular Carcinoma Therapies Involving Immune Checkpoint Inhibitors. Hepatology, 2021, 74, 2264-2276.	7.3	39
41	RhoGTPases and Rho-effectors in hepatocellular carcinoma metastasis: ROCK N' Rho move it. Liver International, 2010, 30, 642-656.	3.9	38
42	Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nature Communications, 2022, 13, 954.	12.8	38
43	Secretory Stanniocalcin 1 promotes metastasis of hepatocellular carcinoma through activation of JNK signaling pathway. Cancer Letters, 2017, 403, 330-338.	7.2	37
44	Ephrin-A3/EphA2 axis regulates cellular metabolic plasticity to enhance cancer stemness in hypoxic hepatocellular carcinoma. Journal of Hepatology, 2022, 77, 383-396.	3.7	36
45	Hepatitis transactivator protein X promotes extracellular matrix modification through HIF/LOX pathway in liver cancer. Oncogenesis, 2018, 7, 44.	4.9	31
46	RSK2-inactivating mutations potentiate MAPK signaling and support cholesterol metabolism in hepatocellular carcinoma. Journal of Hepatology, 2021, 74, 360-371.	3.7	30
47	Genome-wide CRISPR-Cas9 knockout library screening identified PTPMT1 in cardiolipin synthesis is crucial to survival in hypoxia in liver cancer. Cell Reports, 2021, 34, 108676.	6.4	30
48	RhoE/ROCK2 regulates chemoresistance through NF-κB/IL-6/ STAT3 signaling in hepatocellular carcinoma. Oncotarget, 0, 7, 41445-41459.	1.8	30
49	Transcriptional Repressive H3K9 and H3K27 Methylations Contribute to DNMT1-Mediated DNA Methylation Recovery. PLoS ONE, 2011, 6, e16702.	2.5	24
50	Identification of tumor suppressive activity by irradiation microcellâ€mediated chromosome transfer and involvement of <i>alpha Bâ€crystallin</i> in nasopharyngeal carcinoma. International Journal of Cancer, 2008, 122, 1288-1296.	5.1	22
51	Antioxidant supplements promote tumor formation and growth and confer drug resistance in hepatocellular carcinoma by reducing intracellular ROS and induction of TMBIM1. Cell and Bioscience, 2021, 11, 217.	4.8	20
52	Hypoxia and the Metastatic Niche. Advances in Experimental Medicine and Biology, 2019, 1136, 97-112.	1.6	18
53	Bromodomain-containing protein BRPF1 is a therapeutic target for liver cancer. Communications Biology, 2021, 4, 888.	4.4	18
54	Inhibition of CMTM4 Sensitizes Cholangiocarcinoma and Hepatocellular Carcinoma to T Cell–Mediated Antitumor Immunity Through PD‣1. Hepatology Communications, 2022, 6, 178-193.	4.3	16

#	Article	IF	CITATIONS
55	Poloâ€like kinase 4 inhibitor CFIâ€400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity. Hepatology, 2023, 77, 729-744.	7.3	16
56	The folate cycle is a new metabolic weakness of cancer. Molecular and Cellular Oncology, 2017, 4, e1327004.	0.7	13
57	Adaptive and Constitutive Activations of Malic Enzymes Confer Liver Cancer Multilayered Protection Against Reactive Oxygen Species. Hepatology, 2021, 74, 776-796.	7. 3	13
58	Antiâ€ŧumour effects of <scp>PIM</scp> kinase inhibition on progression and chemoresistance of hepatocellular carcinoma. Journal of Pathology, 2020, 252, 65-76.	4.5	9
59	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	3.8	8
60	Histone chaperone FACT complex coordinates with HIF to mediate an expeditious transcription program to adapt to poorly oxygenated cancers. Cell Reports, 2022, 38, 110304.	6.4	6
61	Assessment of Stabilization and Activity of the HIFs Important for Hypoxia-Induced Signalling in Cancer Cells. Methods in Molecular Biology, 2019, 1928, 77-99.	0.9	5
62	Hormonal control of the metabolic machinery of hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2016, 5, 195-197.	1.5	3
63	Role of Metabolism in Adoptive T Cell Therapy: Strategies and Challenges. Antioxidants and Redox Signaling, 2022, 37, 1303-1324.	5.4	1
64	Abstract 4095: Aberrant expression of epigenetically regulated microRNAs in liver cancer. , 2010, , .		0