
Alex R Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4145399/publications.pdf Version: 2024-02-01

Διέν Ρ.Ηλιι

#	Article	IF	CITATIONS
1	Community composition of bacteria isolated from Swiss banknotes varies depending on collection environment. Molecular Ecology, 2023, 32, 2619-2632.	3.9	2
2	Exposure to lysed bacteria can promote or inhibit growth of neighboring live bacteria depending on local abiotic conditions. FEMS Microbiology Ecology, 2022, 98, .	2.7	7
3	Rapid decline of adaptation of <i>Pseudomonas fluorescens</i> to soil biotic environment. Biology Letters, 2022, 18, 20210593.	2.3	6
4	Estimating plasmid conjugation rates: A new computational tool and a critical comparison of methods. Plasmid, 2022, 121, 102627.	1.4	19
5	Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. ISME Journal, 2021, 15, 862-878.	9.8	66
6	Fitness benefits to bacteria of carrying prophages and prophageâ€encoded antibioticâ€resistance genes peak in different environments. Evolution; International Journal of Organic Evolution, 2021, 75, 515-528.	2.3	61
7	Species interactions drive the spread of ampicillin resistance in human-associated gut microbiota. Evolution, Medicine and Public Health, 2021, 9, 256-266.	2.5	5
8	Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nature Ecology and Evolution, 2021, 5, 431-441.	7.8	46
9	Human-associated microbiota suppress invading bacteria even under disruption by antibiotics. ISME Journal, 2021, 15, 2809-2812.	9.8	12
10	Evolution of honey resistance in experimental populations of bacteria depends on the type of honey and has no major side effects for antibiotic susceptibility. Evolutionary Applications, 2021, 14, 1314-1327.	3.1	6
11	Microbial community composition interacts with local abiotic conditions to drive colonization resistance in human gut microbiome samples. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203106.	2.6	12
12	<i>In Vitro</i> Gut Modeling as a Tool for Adaptive Evolutionary Engineering of <i>Lactiplantibacillus plantarum</i> . MSystems, 2021, 6, .	3.8	9
13	Collateral Sensitivity Interactions between Antibiotics Depend on Local Abiotic Conditions. MSystems, 2021, 6, e0105521.	3.8	7
14	Strong effects of lab-to-field environmental transitions on the bacterial intestinal microbiota of Mus musculus are modulated by Trichuris murisinfection. FEMS Microbiology Ecology, 2020, 96, .	2.7	17
15	Associations between sensitivity to antibiotics, disinfectants and heavy metals in natural, clinical and laboratory isolates of <scp><i>Escherichia coli</i></scp> . Environmental Microbiology, 2020, 22, 2664-2679.	3.8	9
16	Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends in Ecology and Evolution, 2020, 35, 539-550.	8.7	28
17	Resident microbial communities inhibit growth and antibiotic-resistance evolution of Escherichia coli in human gut microbiome samples. PLoS Biology, 2020, 18, e3000465.	5.6	47

ALEX R HALL

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 18, e3000465.		Ο
20	Title is missing!. , 2020, 18, e3000465.		0
21	Title is missing!. , 2020, 18, e3000465.		0
22	Title is missing!. , 2020, 18, e3000465.		0
23	Title is missing!. , 2020, 18, e3000465.		0
24	Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. Infection, Genetics and Evolution, 2019, 73, 425-432.	2.3	13
25	Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biology, 2019, 17, e3000265.	5.6	50
26	Coevolutionary dynamics shape the structure of bacteriaâ€phage infection networks. Evolution; International Journal of Organic Evolution, 2019, 73, 1001-1011.	2.3	36
27	Resistance Gene Carriage Predicts Growth of Natural and Clinical Escherichia coli Isolates in the Absence of Antibiotics. Applied and Environmental Microbiology, 2019, 85, .	3.1	9
28	Effects of prior exposure to antibiotics on bacterial adaptation to phages. Journal of Evolutionary Biology, 2018, 31, 277-286.	1.7	3
29	Modification of <i>Escherichia coli</i> –bacteriophage interactions by surfactants and antibiotics <i>in vitro</i> . FEMS Microbiology Ecology, 2017, 93, fiw211.	2.7	19
30	Reversing resistance: different routes and common themes across pathogens. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171619.	2.6	22
31	Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical Escherichia coli Isolates. MBio, 2017, 8, .	4.1	37
32	Parasite genetic distance and local adaptation in coâ€evolving bacteria–bacteriophage populations. Molecular Ecology, 2017, 26, 1747-1755.	3.9	8
33	Effects of antibiotic resistance alleles on bacterial evolutionary responses to viral parasites. Biology Letters, 2016, 12, 20160064.	2.3	4
34	Adaptation to Parasites and Costs of Parasite Resistance in Mutator and Nonmutator Bacteria. Molecular Biology and Evolution, 2016, 33, 770-782.	8.9	22
35	Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research. Bacteriophage, 2015, 5, e1050153.	1.9	47
36	Coevolution with Bacteriophages Drives Genome-Wide Host Evolution and Constrains the Acquisition of Abiotic-Beneficial Mutations. Molecular Biology and Evolution, 2015, 32, 1425-1435.	8.9	94

ALEX R HALL

#	Article	IF	CITATIONS
37	Costs of antibiotic resistance $\hat{a} \in $ separating trait effects and selective effects. Evolutionary Applications, 2015, 8, 261-272.	3.1	39
38	Lytic phages obscure the cost of antibiotic resistance in <i>Escherichia coli</i> . ISME Journal, 2015, 9, 809-820.	9.8	17
39	Interspecific interactions drive chitin and cellulose degradation by aquatic microorganisms. Aquatic Microbial Ecology, 2015, 76, 27-37.	1.8	23
40	Higher resources decrease fluctuating selection during host–parasite coevolution. Ecology Letters, 2014, 17, 1380-1388.	6.4	55
41	Tetracycline modifies competitive interactions in experimental microcosms containing bacteria isolated from freshwater. FEMS Microbiology Ecology, 2014, 90, 168-174.	2.7	6
42	The cost of antibiotic resistance depends on evolutionary history in Escherichia coli. BMC Evolutionary Biology, 2013, 13, 163.	3.2	42
43	No effect of host–parasite coâ€evolution on host range expansion. Journal of Evolutionary Biology, 2013, 26, 205-209.	1.7	13
44	Genotypeâ€byâ€environment interactions due to antibiotic resistance and adaptation in <i><scp>E</scp>scherichia coli</i> . Journal of Evolutionary Biology, 2013, 26, 1655-1664.	1.7	29
45	The role of â€~soaking' in spiteful toxin production in <i>Pseudomonas aeruginosa</i> . Biology Letters, 2013, 9, 20120569.	2.3	10
46	Effects of Sequential and Simultaneous Applications of Bacteriophages on Populations of Pseudomonas aeruginosa <i>In Vitro</i> and in Wax Moth Larvae. Applied and Environmental Microbiology, 2012, 78, 5646-5652.	3.1	139
47	Diversity–disturbance relationships: frequency and intensity interact. Biology Letters, 2012, 8, 768-771.	2.3	71
48	Multiplicity of infection does not accelerate infectivity evolution of viral parasites in laboratory microcosms. Journal of Evolutionary Biology, 2012, 25, 409-415.	1.7	7
49	Bacteriaâ€Phage Coevolution and the Emergence of Generalist Pathogens. American Naturalist, 2011, 177, 44-53.	2.1	87
50	Host-parasite coevolutionary arms races give way to fluctuating selection. Ecology Letters, 2011, 14, 635-642.	6.4	243
51	Genetic basis of infectivity evolution in a bacteriophage. Molecular Ecology, 2011, 20, 981-989.	3.9	93
52	EPISTASIS BUFFERS THE FITNESS EFFECTS OF RIFAMPICIN- RESISTANCE MUTATIONS IN PSEUDOMONAS AERUGINOSA. Evolution; International Journal of Organic Evolution, 2011, 65, 2370-2379.	2.3	65
53	The Fitness Cost of Rifampicin Resistance in <i>Pseudomonas aeruginosa</i> Depends on Demand for RNA Polymerase. Genetics, 2011, 187, 817-822.	2.9	77
54	Mutational neighbourhood and mutation supply rate constrain adaptation in <i>Pseudomonas aeruginosa</i> . Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 643-650.	2.6	42

ALEX R HALL

#	Article	IF	CITATIONS
55	The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nature Reviews Genetics, 2010, 11, 405-414.	16.3	181
56	Hypermutability and Compensatory Adaptation in Antibioticâ€Resistant Bacteria. American Naturalist, 2010, 176, 303-311.	2.1	52
57	The evolution of antibiotic resistance: insight into the roles of molecular mechanisms of resistance and treatment context. Discovery Medicine, 2010, 10, 112-8.	0.5	13
58	Decay of unused characters by selection and drift. Journal of Evolutionary Biology, 2008, 21, 610-617.	1.7	57
59	How does resource supply affect evolutionary diversification?. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 73-78.	2.6	38