List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4145122/publications.pdf Version: 2024-02-01

		2322	5829
343	31,718	98	161
papers	citations	h-index	g-index
351 all docs	351 docs citations	351 times ranked	8755 citing authors

Δυιςμαν ΟΛΙ-ΥΛΜ

#	Article	IF	CITATIONS
1	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	3.1	1,020
2	The Palomar Transient Factory: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2009, 121, 1395-1408.	3.1	900
3	Exploring the Optical Transient Sky with the Palomar Transient Factory. Publications of the Astronomical Society of the Pacific, 2009, 121, 1334-1351.	3.1	618
4	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	27.8	601
5	WISeREP—An Interactive Supernova Data Repository. Publications of the Astronomical Society of the Pacific, 2012, 124, 668-681.	3.1	596
6	Luminous Supernovae. Science, 2012, 337, 927-932.	12.6	478
7	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	3.1	453
8	Hydrogen-poor superluminous stellar explosions. Nature, 2011, 474, 487-489.	27.8	440
9	The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. Nature, 2005, 437, 845-850.	27.8	430
10	Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature, 2006, 442, 1014-1017.	27.8	422
11	Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature, 2011, 480, 344-347.	27.8	412
12	An extremely luminous X-ray outburst at the birth of a supernova. Nature, 2008, 453, 469-474.	27.8	407
13	Supernova 2007bi as a pair-instability explosion. Nature, 2009, 462, 624-627.	27.8	399
14	Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Astronomy and Astrophysics, 2013, 549, A147.	5.1	357
15	A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES. Astrophysical Journal, 2014, 793, 38.	4.5	332
16	A novel explosive process is required for the \hat{I}^3 -ray burst GRB 060614. Nature, 2006, 444, 1053-1055.	27.8	319
17	The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724. Nature, 2005, 438, 988-990.	27.8	313
18	Detection of Circumstellar Material in a Normal Type Ia Supernova. Science, 2007, 317, 924-926.	12.6	313

#	Article	IF	CITATIONS
19	THE FIRST SYSTEMATIC STUDY OF TYPE Ibc SUPERNOVA MULTI-BAND LIGHT CURVES. Astrophysical Journal, 2011, 741, 97.	4.5	305
20	FREQUENCY OF SOLAR-LIKE SYSTEMS AND OF ICE AND GAS GIANTS BEYOND THE SNOW LINE FROM HIGH-MAGNIFICATION MICROLENSING EVENTS IN 2005-2008. Astrophysical Journal, 2010, 720, 1073-1089.	4.5	296
21	NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR. Astrophysical Journal, 2010, 713, 1073-1094.	4.5	292
22	SWIFT J2058.4+0516: DISCOVERY OF A POSSIBLE SECOND RELATIVISTIC TIDAL DISRUPTION FLARE?. Astrophysical Journal, 2012, 753, 77.	4.5	288
23	PTF 11kx: A Type la Supernova with a Symbiotic Nova Progenitor. Science, 2012, 337, 942-945.	12.6	282
24	A faint type of supernova from a white dwarf with a helium-rich companion. Nature, 2010, 465, 322-325.	27.8	273
25	A massive hypergiant star as the progenitor of the supernova SN 2005gl. Nature, 2009, 458, 865-867.	27.8	267
26	A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature, 2014, 509, 471-474.	27.8	250
27	PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astronomy and Astrophysics, 2015, 579, A40.	5.1	239
28	A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071. Astrophysical Journal, 2005, 628, L109-L112.	4.5	231
29	CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS. Astrophysical Journal, 2012, 744, 10.	4.5	231
30	SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260. Astrophysical Journal, 2007, 659, L13-L16.	4.5	230
31	Confined dense circumstellar material surrounding a regular type II supernova. Nature Physics, 2017, 13, 510-517.	16.7	221
32	A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS. Astrophysical Journal, 2014, 781, 13.	4.5	207
33	Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features. Science, 2011, 333, 856-859.	12.6	206
34	The broad-lined Type Ic supernova 2003jdâ~ Monthly Notices of the Royal Astronomical Society, 0, 383, 1485-1500.	4.4	202
35	ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na I ABSORPTION. Astrophysical Journal, 2013, 779, 38.	4.5	202
36	An outburst from a massive star 40 days before a supernova explosion. Nature, 2013, 494, 65-67.	27.8	183

#	Article	IF	CITATIONS
37	THE SUPERNOVA DELAY TIME DISTRIBUTION IN GALAXY CLUSTERS AND IMPLICATIONS FOR TYPE-Ia PROGENITORS AND METAL ENRICHMENT. Astrophysical Journal, 2010, 722, 1879-1894.	4.5	181
38	TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM. Astrophysical Journal, Supplement Series, 2013, 207, 3.	7.7	180
39	MOA-2011-BLG-293Lb: A TEST OF PURE SURVEY MICROLENSING PLANET DETECTIONS. Astrophysical Journal, 2012, 755, 102.	4.5	175
40	PRECURSORS PRIOR TO TYPE IIn SUPERNOVA EXPLOSIONS ARE COMMON: PRECURSOR RATES, PROPERTIES, AND CORRELATIONS. Astrophysical Journal, 2014, 789, 104.	4.5	175
41	CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES. Astrophysical Journal, 2012, 755, 161.	4.5	174
42	OGLE-2005-BLG-071Lb, THE MOST MASSIVE M DWARF PLANETARY COMPANION?. Astrophysical Journal, 2009, 695, 970-987.	4.5	173
43	PROPER IMAGE SUBTRACTIONâ€"OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING. Astrophysical Journal, 2016, 830, 27.	4.5	171
44	HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2016, 830, 13.	4.5	170
45	DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn. Astrophysical Journal Letters, 2013, 775, L7.	8.3	169
46	An Asymmetric Energetic Type Ic Supernova Viewed Off-Axis, and a Link to Gamma Ray Bursts. Science, 2005, 308, 1284-1287.	12.6	167
47	The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425. Nature, 2004, 430, 648-650.	27.8	166
48	Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Astronomy and Astrophysics, 2011, 533, A134.	5.1	164
49	FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND & lt;10-DAY-OLD TYPE II SUPERNOVAE. Astrophysical Journal, 2016, 818, 3.	4.5	161
50	A strong ultraviolet pulse from a newborn type Ia supernova. Nature, 2015, 521, 328-331.	27.8	157
51	SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51. Astrophysical Journal Letters, 2011, 742, L18.	8.3	156
52	On the diversity of superluminous supernovae: ejected mass as the dominant factor. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3869-3893.	4.4	154
53	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1, .	10.1	154
54	CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES. Astrophysical Journal, 2010, 721, 777-784.	4.5	153

#	Article	IF	CITATIONS
55	SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND. Astrophysical Journal, 2010, 724, 1396-1401.	4.5	152
56	A non-spherical core in the explosion of supernova SN 2004dj. Nature, 2006, 440, 505-507.	27.8	151
57	The Most Luminous Supernovae. Annual Review of Astronomy and Astrophysics, 2019, 57, 305-333.	24.3	146
58	THE GOLDEN STANDARD TYPE Ia SUPERNOVA 2005cf: OBSERVATIONS FROM THE ULTRAVIOLET TO THE NEAR-INFRARED WAVEBANDS. Astrophysical Journal, 2009, 697, 380-408.	4.5	144
59	Massive stars exploding in a He-rich circumstellar medium - I. Type Ibn (SN 2006jc-like) events. Monthly Notices of the Royal Astronomical Society, 2008, 389, 113-130.	4.4	143
60	Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era. Publications of the Astronomical Society of the Pacific, 2012, 124, 1175-1196.	3.1	141
61	VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA,. Astrophysical Journal, 2009, 702, 1157-1170.	4.5	139
62	Superluminous supernovae at redshifts of 2.05 and 3.90. Nature, 2012, 491, 228-231.	27.8	139
63	Hubble Space Telescope spectra of the Type Ia supernova SNÂ2011fe: a tail of low-density, high-velocity material with ZÂ<ÂZ㊙. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1959-1979.	4.4	139
64	A tidal disruption event coincident with a high-energy neutrino. Nature Astronomy, 2021, 5, 510-518.	10.1	136
65	PTF12os and iPTF13bvn. Astronomy and Astrophysics, 2016, 593, A68.	5.1	136
66	Superluminous supernovae from PESSTO. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2096-2113.	4.4	135
67	The THESEUS space mission concept: science case, design and expected performances. Advances in Space Research, 2018, 62, 191-244.	2.6	133
68	SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2016, 826, 39.	4.5	133
69	THE EXTREME HOSTS OF EXTREME SUPERNOVAE. Astrophysical Journal, 2011, 727, 15.	4.5	132
70	An unusually brilliant transient in the galaxy M85. Nature, 2007, 447, 458-460.	27.8	128
71	CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES. Astrophysical Journal Letters, 2012, 756, L30.	8.3	127
72	RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE ".Ia―EXPLOSION. Astrophysical Journal Letters, 2010 723, L98-L102.), _{8.3}	126

#	Article	IF	CITATIONS
73	The Palomar Transient Factory Photometric Calibration. Publications of the Astronomical Society of the Pacific, 2012, 124, 62-73.	3.1	124
74	The first month of evolution of the slow-rising Type IIP SN 2013ej in M74. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 438, L101-L105.	3.3	124
75	SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT. Astrophysical Journal, 2013, 773, 53.	4.5	122
76	RAPIDLY RISING TRANSIENTS IN THE SUPERNOVA—SUPERLUMINOUS SUPERNOVA GAP. Astrophysical Journal, 2016, 819, 35.	4.5	122
77	EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN) Tj ETG	2q1_1 0.78	34314 rgBT 118
78	A Population of Intergalactic Supernovae in Galaxy Clusters. Astronomical Journal, 2003, 125, 1087-1094.	4.7	118
79	Constraints on the ejecta of the GW170817 neutron star merger from its electromagnetic emission. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3423-3441.	4.4	117
80	THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51. Astrophysical Journal Letters, 2011, 741, L28.	8.3	115
81	The bolometric light curves and physical parameters of stripped-envelope supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2973-3002.	4.4	115
82	Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra. Astrophysical Journal, 2008, 674, 51-69.	4.5	112
83	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	27.8	112
84	A photometric redshift of z = 6.39 \hat{A} ± 0.12 for GRB 050904. Nature, 2006, 440, 181-183.	27.8	111
85	PTF11iqb: cool supergiant mass-loss that bridges the gap between TypeÂlIn and normal supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1876-1896.	4.4	111
86	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	4.5	111
87	THE COLLIMATION AND ENERGETICS OF THE BRIGHTEST <i>SWIFT</i> GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 711, 641-654.	4.5	110
88	SNÂ2009ip à la PESSTO: no evidence for core collapse yetâ~ Monthly Notices of the Royal Astronomical Society, 2013, 433, 1312-1337.	4.4	110
89	SN 2010jl: OPTICAL TO HARD X-RAY OBSERVATIONS REVEAL AN EXPLOSION EMBEDDED IN A TEN SOLAR MASS COCOON. Astrophysical Journal, 2014, 781, 42.	4.5	110
90	DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2015, 814, 108.	4.5	107

#	Article	IF	CITATIONS
91	The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics*. Astrophysical Journal, 2020, 904, 35.	4.5	107
92	Early optical emission from the \hat{I}^3 -ray burst of 4 October 2002. Nature, 2003, 422, 284-286.	27.8	105
93	The Type IIb SN 2008ax: spectral and light curve evolution. Monthly Notices of the Royal Astronomical Society, 2008, 389, 955-966.	4.4	105
94	Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 860, 100.	4.5	105
95	THE RISE OF SN 2014J IN THE NEARBY GALAXY M82. Astrophysical Journal Letters, 2014, 784, L12.	8.3	104
96	DARK BURSTS IN THE <i>SWIFT</i> ERA: THE PALOMAR 60 INCH- <i>SWIFT</i> EARLY OPTICAL AFTERGLOW CATALOG. Astrophysical Journal, 2009, 693, 1484-1493.	4.5	102
97	The rising light curves of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3895-3910.	4.4	101
98	A statistical analysis of circumstellar material in Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 222-240.	4.4	100
99	SCIENCE WITH A WIDE-FIELD UV TRANSIENT EXPLORER. Astronomical Journal, 2014, 147, 79.	4.7	100
100	THE TYPE IIb SUPERNOVA 2013df AND ITS COOL SUPERGIANT PROGENITOR. Astronomical Journal, 2014, 147, 37.	4.7	99
101	Supernovae in the Subaru Deep Field: the rate and delay-time distribution of Type Ia supernovae out to redshift 2. Monthly Notices of the Royal Astronomical Society, 2011, 417, 916-940.	4.4	98
102	LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE. Astrophysical Journal Letters, 2015, 807, L18.	8.3	98
103	Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 855, 2.	4.5	98
104	HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E. Astrophysical Journal, 2011, 738, 21.	4.5	97
105	SN 2009md: another faint supernova from a low-mass progenitor. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1417-1433.	4.4	97
106	Supernova 2002ap: the first month. Monthly Notices of the Royal Astronomical Society, 2002, 332, L73-L77.	4.4	94
107	THE FIRST CIRCUMBINARY PLANET FOUND BY MICROLENSING: OGLE-2007-BLG-349L(AB)c. Astronomical Journal, 2016, 152, 125.	4.7	94
108	The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1391-1416.	4.4	93

#	Article	IF	CITATIONS
109	THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION. Astrophysical Journal, 2014, 797, 24.	4.5	92
110	LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES. Astrophysical Journal, 2017, 835, 13.	4.5	92
111	<i>Hubble Space Telescope</i> studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2359-2379.	4.4	91
112	Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	4.5	91
113	Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1559-1578.	4.4	90
114	SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR. Astrophysical Journal Letters, 2016, 828, L18.	8.3	88
115	The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am ^{â^—} . Astrophysical Journal, 2018, 853, 62.	4.5	87
116	The supernova rate in local galaxy clusters. Monthly Notices of the Royal Astronomical Society, 0, 383, 1121-1130.	4.4	86
117	Studying the diversity of Type Ia supernovae in the ultraviolet: comparing models with observations. Monthly Notices of the Royal Astronomical Society, 2012, 427, 103-113.	4.4	86
118	The delay of shock breakout due to circumstellar material evident in most type II supernovae. Nature Astronomy, 2018, 2, 808-818.	10.1	86
119	A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. Science, 2018, 362, 201-206.	12.6	84
120	THE CHEMICAL ABUNDANCES OF TYCHO G IN SUPERNOVA REMNANT 1572. Astrophysical Journal, 2009, 691, 1-15.	4.5	83
121	A single sub-kilometre Kuiper belt object from a stellar occultation in archival data. Nature, 2009, 462, 895-897.	27.8	82
122	REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY. Astrophysical Journal, 2011, 736, 159.	4.5	81
123	LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS. Astrophysical Journal, 2012, 752, 101.	4.5	79
124	Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light. Astrophysical Journal, 2017, 836, 158.	4.5	79
125	Observational and Physical Classification of Supernovae. , 2017, , 195-237.		79
126	PTF10iya: a short-lived, luminous flare from the nuclear region of a star-forming galaxy. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2684-2699.	4.4	78

#	Article	IF	CITATIONS
127	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	8.3	78
128	THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95. Astrophysical Journal, 2012, 756, 131.	4.5	76
129	A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT. Astrophysical Journal, 2014, 782, 42.	4.5	76
130	Supernovae in deep Hubble Space Telescope galaxy cluster fields: cluster rates and field counts. Monthly Notices of the Royal Astronomical Society, 2002, 332, 37-48.	4.4	75
131	ANALYSIS OF THE EARLY-TIME OPTICAL SPECTRA OF SN 2011fe IN M101. Astrophysical Journal Letters, 2012, 752, L26.	8.3	75
132	Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3258-3274.	4.4	75
133	TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS. Astrophysical Journal, 2016, 820, 33.	4.5	75
134	Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4642-4662.	4.4	74
135	The J -Band Light Curve of SN 2003lw, Associated with GRB 031203. Astrophysical Journal, 2004, 609, L59-L62.	4.5	73
136	A VERY LARGE ARRAY SEARCH FOR 5 GHz RADIO TRANSIENTS AND VARIABLES AT LOW GALACTIC LATITUDES. Astrophysical Journal, 2011, 740, 65.	4.5	73
137	Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3816-3842.	4.4	72
138	DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION. Astrophysical Journal, 2013, 769, 130.	4.5	71
139	NTT, <i>SPITZER</i> , AND <i>CHANDRA</i> SPECTROSCOPY OF SDSSJ095209.56+214313.3: THE MOST LUMINOUS CORONAL-LINE SUPERNOVA EVER OBSERVED, OR A STELLAR TIDAL DISRUPTION EVENT?. Astrophysical Journal, 2009, 701, 105-121.	4.5	70
140	The supernova CSS121015:004244+132827: a clue for understanding superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 441, 289-303.	4.4	70
141	The redshift distribution of type la supernovae: constraints on progenitors and cosmic star formation history. Monthly Notices of the Royal Astronomical Society, 2004, 347, 942-950.	4.4	69
142	Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6. Monthly Notices of the Royal Astronomical Society, 2007, 382, 1169-1186.	4.4	69
143	Discovery and confirmation of the shortest gamma-ray burst from a collapsar. Nature Astronomy, 2021, 5, 917-927.	10.1	69
144	Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3. Astrophysical Journal, 2020, 905, 145.	4.5	69

#	Article	IF	CITATIONS
145	SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS. Astrophysical Journal, 2015, 799, 52.	4.5	68
146	SN 2004A: another Type II-P supernova with a red supergiant progenitor. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1303-1320.	4.4	66
147	ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr. Astrophysical Journal Letters, 2010, 714, L280-L284.	8.3	66
148	Environment-derived constraints on the progenitors of low-luminosity Type I supernovaea˜ Monthly Notices of the Royal Astronomical Society, 2013, 434, 527-541.	4.4	66
149	SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU. Astrophysical Journal, 2013, 770, 29.	4.5	66
150	A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion. Astrophysical Journal, 2021, 912, 46.	4.5	66
151	On the nature of hydrogen-rich superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1046-1072.	4.4	65
152	Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1007-1012.	4.4	64
153	An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1258-1267.	4.4	64
154	The Palomar Transient Factory photometric catalog 1.0. Publications of the Astronomical Society of the Pacific, 2012, 124, 854-860.	3.1	63
155	MEASURING THE ABUNDANCE OF SUB-KILOMETER-SIZED KUIPER BELT OBJECTS USING STELLAR OCCULTATIONS. Astrophysical Journal, 2012, 761, 150.	4.5	62
156	A HIGH-RESOLUTION SPECTROSCOPIC SEARCH FOR THE REMAINING DONOR FOR TYCHO'S SUPERNOVA. Astrophysical Journal, 2013, 774, 99.	4.5	62
157	The rise and fall of the Type Ib supernova iPTF13bvn. Astronomy and Astrophysics, 2014, 565, A114.	5.1	62
158	INTERACTION-POWERED SUPERNOVAE: RISE-TIME VERSUS PEAK-LUMINOSITY CORRELATION AND THE SHOCK-BREAKOUT VELOCITY. Astrophysical Journal, 2014, 788, 154.	4.5	62
159	Transient processing and analysis using AMPEL: alert management, photometry, and evaluation of light curves. Astronomy and Astrophysics, 2019, 631, A147.	5.1	62
160	THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav. Astrophysical Journal, 2011, 732, 118.	4.5	61
161	X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS. Astrophysical Journal, 2013, 763, 42.	4.5	61
162	ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE. Astrophysical Journal, 2017, 835, 58.	4.5	61

#	Article	IF	CITATIONS
163	Search for Low-Mass Exoplanets by Gravitational Microlensing at High Magnification. Science, 2004, 305, 1264-1266.	12.6	60
164	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	4.5	60
165	An Isolated Stellar-mass Black Hole Detected through Astrometric Microlensing*. Astrophysical Journal, 2022, 933, 83.	4.5	60
166	Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2019, 621, A71.	5.1	59
167	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	4.5	59
168	An Energetic Afterglow from a Distant Stellar Explosion. Astrophysical Journal, 2006, 646, L99-L102.	4.5	58
169	A SUB-SATURN MASS PLANET, MOA-2009-BLG-319Lb. Astrophysical Journal, 2011, 728, 120.	4.5	58
170	450 d of Type II SN 2013ej in optical and near-infrared. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2003-2018.	4.4	57
171	Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd. Astrophysical Journal, 2017, 840, 57.	4.5	57
172	The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses. Astrophysical Journal, 2020, 905, 58.	4.5	57
173	The type Ia supernova rate in $z \le 1$ galaxy clusters: implications for progenitors and the source of cluster iron. Monthly Notices of the Royal Astronomical Society, 2004, 347, 951-956.	4.4	56
174	PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovaea~ Monthly Notices of the Royal Astronomical Society, 2014, 437, 1519-1533.	4.4	56
175	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	7.7	56
176	PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99. Astrophysical Journal, 2011, 730, 134.	4.5	55
177	On the progenitor of the Type IIP SN 2013ej in M74. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L56-L60.	3.3	55
178	The type lax supernova, SN 2015H. Astronomy and Astrophysics, 2016, 589, A89.	5.1	55
179	Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophysical Journal, 2019, 887, 169.	4.5	55
180	SN 2010MB: DIRECT EVIDENCE FOR A SUPERNOVA INTERACTING WITH A LARGE AMOUNT OF HYDROGEN-FREE CIRCUMSTELLAR MATERIAL. Astrophysical Journal, 2014, 785, 37.	4.5	54

#	Article	IF	CITATIONS
181	The type IIb SN 2008ax: the nature of the progenitor. Monthly Notices of the Royal Astronomical Society: Letters, 2008, 391, L5-L9.	3.3	53
182	The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2463-2473.	4.4	52
183	Multicolor Observations of the GRB 000926 Afterglow. Astrophysical Journal, 2001, 549, L7-L10.	4.5	51
184	SN 2010jp (PTF10aaxi): a jet in a Type II supernova. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1135-1144.	4.4	51
185	Supersolar Ni/Fe production in the Type IIP SN 2012ec. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2482-2494.	4.4	51
186	iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER. Astrophysical Journal Letters, 2015, 803, L24.	8.3	50
187	Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1039-1059.	4.4	50
188	Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle. Monthly Notices of the Royal Astronomical Society, 2018, 474, 197-218.	4.4	50
189	EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE <i>HUBBLE SPACE TELESCOPE </i> . Astrophysical Journal, 2012, 749, 126.	4.5	49
190	iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor. Astronomy and Astrophysics, 2016, 592, A89.	5.1	49
191	The Progenitor and Early Evolution of the Type IIb SN 2016gkg. Astrophysical Journal Letters, 2017, 836, L12.	8.3	49
192	The UV/optical spectra of the Type Ia supernova SN 2010jn: a bright supernova with outer layers rich in iron-group elements. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2228-2248.	4.4	48
193	Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4094-4116.	4.4	48
194	Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nature Astronomy, 2017, 1, 713-720.	10.1	48
195	A WC/WO star exploding within an expanding carbon–oxygen–neon nebula. Nature, 2022, 601, 201-204.	27.8	48
196	Type IIn supernova light-curve properties measured from an untargeted survey sample. Astronomy and Astrophysics, 2020, 637, A73.	5.1	47
197	Bayesian Single-Epoch Photometric Classification of Supernovae. Astronomical Journal, 2007, 134, 1285-1297.	4.7	46
198	SN 2009ip at late times – an interacting transient at +2Âyears. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3887-3906.	4.4	45

#	Article	IF	CITATIONS
199	PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Monthly Notices of the Royal Astronomical Society, 2011, 418, 747-758.	4.4	43
200	A High Angular Resolution Search for the Progenitor of the Type Ic Supernova 2004gt. Astrophysical Journal, 2005, 630, L29-L32.	4.5	42
201	DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY. Astrophysical Journal Letters, 2012, 760, L33.	8.3	42
202	SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2312-2331.	4.4	42
203	RADIO OBSERVATIONS OF A SAMPLE OF BROAD-LINE TYPE IC SUPERNOVAE DISCOVERED BY PTF/IPTF: A SEARCH FOR RELATIVISTIC EXPLOSIONS. Astrophysical Journal, 2016, 830, 42.	4.5	42
204	The late-time light curve of the Type Ia supernova SN 2011fe. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3798-3812.	4.4	42
205	The bumpy light curve of Type IIn supernova iPTF13z over 3 years. Astronomy and Astrophysics, 2017, 605, A6.	5.1	41
206	Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino. Physical Review Letters, 2022, 128, .	7.8	41
207	LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx. Astrophysical Journal, 2013, 772, 125.	4.5	40
208	OPTICAL AND NEAR-INFRARED OBSERVATIONS OF SN 2013DX ASSOCIATED WITH GRB 130702A. Astrophysical Journal, 2016, 818, 79.	4.5	40
209	Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production. Astrophysical Journal, 2020, 892, 153.	4.5	40
210	MICROLENSING BINARIES WITH CANDIDATE BROWN DWARF COMPANIONS. Astrophysical Journal, 2012, 760, 116.	4.5	39
211	Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L102-L106.	3.3	39
212	PTF13efv—AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY. Astrophysical Journal, 2016, 824, 6.	4.5	39
213	Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project. Astronomy and Astrophysics, 2016, 588, A5.	5.1	39
214	A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nature Astronomy, 2018, 2, 887-895.	10.1	39
215	THE TYPE Ia SUPERNOVA RATE IN REDSHIFT 0.5-0.9 GALAXY CLUSTERS. Astrophysical Journal, 2010, 718, 876-893.	4.5	38
216	AN EMERGING CLASS OF BRIGHT, FAST-EVOLVING SUPERNOVAE WITH LOW-MASS EJECTA. Astrophysical Journal, 2011, 730, 89.	4.5	38

#	Article	IF	CITATIONS
217	Multi-epoch high-spectral-resolution observations of neutral sodium in 14 Type Ia supernovaea~ Monthly Notices of the Royal Astronomical Society, 2014, 443, 1849-1860.	4.4	38
218	On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2721-2740.	4.4	38
219	A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 827, L40.	8.3	38
220	Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event. Astrophysical Journal, 2019, 879, 119.	4.5	38
221	SN2019dge: A Helium-rich Ultra-stripped Envelope Supernova. Astrophysical Journal, 2020, 900, 46.	4.5	38
222	OGLE-2009-BLG-092/MOA-2009-BLG-137: A DRAMATIC REPEATING EVENT WITH THE SECOND PERTURBATION PREDICTED BY REAL-TIME ANALYSIS. Astrophysical Journal, 2010, 723, 81-88.	4.5	36
223	EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE IC SUPERNOVA PTF 10vgv. Astrophysical Journal Letters, 2012, 747, L5.	8.3	36
224	A nearby super-luminous supernova with a long pre-maximum & "plateau―and strong C†ll features. Astronomy and Astrophysics, 2018, 620, A67.	5.1	36
225	THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS. Astrophysical Journal, 2009, 693, L76-L80.	4.5	35
226	Type IIn supernovae at redshift z â‰^ 2 from archival data. Nature, 2009, 460, 237-239.	27.8	35
227	THE OLD ENVIRONMENT OF THE FAINT CALCIUM-RICH SUPERNOVA SN 2005cz. Astrophysical Journal Letters, 2011, 728, L36.	8.3	35
228	Type Ia supernova spectral features in the context of their host galaxy properties. Monthly Notices of the Royal Astronomical Society, 2015, 446, 354-368.	4.4	35
229	THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES. Astrophysical Journal, 2016, 820, 57.	4.5	35
230	The Type Icn SN 2021csp: Implications for the Origins of the Fastest Supernovae and the Fates of Wolf–Rayet Stars. Astrophysical Journal, 2022, 927, 180.	4.5	35
231	PTF 10bzf (SN 2010ah): A BROAD-LINE IC SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2011, 741, 76.	4.5	33
232	Massive stars exploding in a He-rich circumstellar medium – V. Observations of the slow-evolving SN Ibn OGLE-2012-SN-006. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1941-1953.	4.4	33
233	Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope. Astrophysical Journal Letters, 2017, 837, L14.	8.3	33
234	Early observations of the nearby Type Ia supernova SNÂ2015F. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4476-4494.	4.4	33

#	Article	IF	CITATIONS
235	SNÂ2017ens: The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SNÂIIn. Astrophysical Journal Letters, 2018, 867, L31.	8.3	33
236	Upper limit for circumstellar gas around the type Ia SNÂ2000cx. Astronomy and Astrophysics, 2007, 474, 931-936.	5.1	32
237	Asteroid rotation periods from the Palomar Transient Factory survey. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2094-2108.	4.4	32
238	The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq. Astrophysical Journal, 2020, 898, 56.	4.5	32
239	The Young and Nearby Normal Type Ia Supernova 2018gv: UV-optical Observations and the Earliest Spectropolarimetry. Astrophysical Journal, 2020, 902, 46.	4.5	32
240	A High-Resolution Spectrum of the Extremely Metal-rich Bulge G Dwarf OGLE-2006-BLG-265. Astrophysical Journal, 2007, 655, L33-L36.	4.5	31
241	LONG-DURATION RADIO TRANSIENTS LACKING OPTICAL COUNTERPARTS ARE POSSIBLY GALACTIC NEUTRON STARS. Astrophysical Journal, 2010, 711, 517-531.	4.5	31
242	<i>HUBBLE SPACE TELESCOPE</i> STUDIES OF NEARBY TYPE Ia SUPERNOVAE: THE MEAN MAXIMUM LIGHT ULTRAVIOLET SPECTRUM AND ITS DISPERSION. Astrophysical Journal Letters, 2011, 727, L35.	8.3	31
243	Study of the Plutino Object (208996) 2003 AZ ₈₄ from Stellar Occultations: Size, Shape, and Topographic Features. Astronomical Journal, 2017, 154, 22.	4.7	31
244	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	4.5	31
245	Supernova Discoveries 2010–2011: Statistics and Trends. Publications of the Astronomical Society of the Pacific, 2013, 125, 749-752.	3.1	30
246	iPTF13beo: the double-peaked light curve of a Type Ibn supernova discovered shortly after explosion. Monthly Notices of the Royal Astronomical Society, 2014, 443, 671-677.	4.4	30
247	From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5142-5158.	4.4	30
248	Constraints on Circumstellar Material around the Type Ia Supernova 2007af. Astrophysical Journal, 2007, 671, L25-L28.	4.5	29
249	<i>GALEX</i> Spectroscopy of SN 2005ay Suggests Ultraviolet Spectral Uniformity among Type II-P Supernovae. Astrophysical Journal, 2008, 685, L117-L120.	4.5	29
250	Massive stars exploding in a He-rich circumstellar medium – VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1954-1966.	4.4	29
251	UNSUPERVISED CLUSTERING OF TYPE II SUPERNOVA LIGHT CURVES. Astrophysical Journal, 2016, 828, 111.	4.5	29
252	A hybrid envelope-stripping mechanism for massive stars from supernova nebular spectroscopy. Nature Astronomy, 2019, 3, 434-439.	10.1	29

#	Article	IF	CITATIONS
253	ULTRAVIOLET SPECTROSCOPY OF TYPE IIB SUPERNOVAE: DIVERSITY AND THE IMPACT OF CIRCUMSTELLAR MATERIAL. Astrophysical Journal, 2015, 803, 40.	4.5	28
254	SN 2017dio: A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium ^{â^—} . Astrophysical Journal Letters, 2018, 854, L14.	8.3	28
255	SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. Astrophysical Journal Letters, 2019, 885, L23.	8.3	28
256	Variable Hα Emission in the Nebular Spectra of the Low-luminosity Type Ia SN2018cqj/ATLAS18qtd. Astrophysical Journal, 2020, 889, 100.	4.5	28
257	CHARACTERIZING LENSES AND LENSED STARS OF HIGH-MAGNIFICATION SINGLE-LENS GRAVITATIONAL MICROLENSING EVENTS WITH LENSES PASSING OVER SOURCE STARS. Astrophysical Journal, 2012, 751, 41.	4.5	27
258	SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE. Astrophysical Journal, 2015, 811, 117.	4.5	26
259	SEARCH FOR EARLY GAMMA-RAY PRODUCTION IN SUPERNOVAE LOCATED IN A DENSE CIRCUMSTELLAR MEDIUM WITH THE <i>FERMI</i> LAT. Astrophysical Journal, 2015, 807, 169.	4.5	26
260	Oxygen and helium in stripped-envelope supernovae. Astronomy and Astrophysics, 2018, 618, A37.	5.1	26
261	Late-time observations of the extraordinary Type II supernova iPTF14hls. Astronomy and Astrophysics, 2019, 621, A30.	5.1	26
262	OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION. Astrophysical Journal Letters, 2015, 799, L2.	8.3	25
263	Exploring the Efficacy and Limitations of Shock-cooling Models: New Analysis of Type II Supernovae Observed by the Kepler Mission. Astrophysical Journal, 2017, 848, 8.	4.5	25
264	SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1937-1959.	4.4	25
265	A Simple Analysis of Type I Superluminous Supernova Peak Spectra: Composition, Expansion Velocities, and Dynamics. Astrophysical Journal, 2019, 882, 102.	4.5	25
266	SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart. Astrophysical Journal, 2020, 902, 86.	4.5	25
267	Four (Super)luminous Supernovae from the First Months of the ZTF Survey. Astrophysical Journal, 2020, 901, 61.	4.5	25
268	PTF11mnb: First analog of supernova 2005bf. Astronomy and Astrophysics, 2018, 609, A106.	5.1	24
269	ZTF18aalrxas: A Type IIb Supernova from a Very Extended Low-mass Progenitor. Astrophysical Journal Letters, 2019, 878, L5.	8.3	24
270	SN 2007ax: An Extremely Faint Type la Supernova. Astrophysical Journal, 2008, 683, L29-L32.	4.5	23

#	Article	IF	CITATIONS
271	Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050. Astronomy and Astrophysics, 2009, 508, 467-478.	5.1	23
272	Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction. Monthly Notices of the Royal Astronomical Society, 2014, 445, 30-48.	4.4	23
273	SN2012ca: a stripped envelope core-collapse SN interacting with dense circumstellar medium. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 437, L51-L55.	3.3	23
274	Spectropolarimetry of SNÂ2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4467-4484.	4.4	23
275	iPTF Archival Search for Fast Optical Transients. Astrophysical Journal Letters, 2018, 854, L13.	8.3	23
276	A significantly off-centre 56Ni distribution for the low-luminosity type Ia supernova SN 2016brx from the 100IAS survey. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L70-L75.	3.3	23
277	Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5120-5141.	4.4	23
278	SN2002es-LIKE SUPERNOVAE FROM DIFFERENT VIEWING ANGLES. Astrophysical Journal, 2016, 832, 86.	4.5	23
279	Discovery and follow-up of the unusual nuclear transient OGLE17aaj. Astronomy and Astrophysics, 2019, 622, L2.	5.1	22
280	Optical follow-up observations of PTF10qts, a luminous broad-lined TypeÂlc supernova found by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2768-2779.	4.4	21
281	RADIO FOLLOW-UP OF GRAVITATIONAL-WAVE TRIGGERS DURING ADVANCED LIGO O1. Astrophysical Journal Letters, 2016, 829, L28.	8.3	21
282	Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind. Astrophysical Journal, 2019, 872, 141.	4.5	20
283	The Peculiar Ca-rich SN2019ehk: Evidence for a Type IIb Core-collapse Supernova from a Low-mass Stripped Progenitor. Astrophysical Journal Letters, 2021, 907, L18.	8.3	20
284	THE MID-INFRARED LIGHT CURVE OF NEARBY CORE-COLLAPSE SUPERNOVA SN 2011dh (PTF 11eon). Astrophysical Journal Letters, 2013, 778, L19.	8.3	19
285	A double white dwarf with a paradoxical origin?. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3966-3974.	4.4	19
286	Discovery of an Intermediate-luminosity Red Transient in M51 and Its Likely Dust-obscured, Infrared-variable Progenitor. Astrophysical Journal Letters, 2019, 880, L20.	8.3	19
287	The luminous late-time emission of the type-lc supernova iPTF15dtg – evidence for powering from a magnetar?. Astronomy and Astrophysics, 2019, 621, A64.	5.1	19
288	Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2021, 651, A81.	5.1	19

#	Article	IF	CITATIONS
289	A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi. Astrophysical Journal, 2020, 903, 132.	4.5	19
290	PTF 12gzk—A RAPIDLY DECLINING, HIGH-VELOCITY TYPE Ic RADIO SUPERNOVA. Astrophysical Journal, 2013, 778, 63.	4.5	18
291	Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S. Monthly Notices of the Royal Astronomical Society, 2016, 456, 323-346.	4.4	18
292	SN 2018fif: The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility. Astrophysical Journal, 2020, 902, 6.	4.5	18
293	Helium-rich Superluminous Supernovae from the Zwicky Transient Facility. Astrophysical Journal Letters, 2020, 902, L8.	8.3	18
294	An Upper Mass Limit on a Red Supergiant Progenitor for the Type II-Plateau Supernova SN 2006my1. Publications of the Astronomical Society of the Pacific, 2008, 120, 1259-1266.	3.1	17
295	SNÂ2000cx and SNÂ2013bh: extremely rare, nearly twin Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1225-1237.	4.4	17
296	LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation. Astronomy and Astrophysics, 2016, 588, A1.	5.1	17
297	The Double-peaked Radio Light Curve of Supernova PTF11qcj. Astrophysical Journal, 2019, 872, 201.	4.5	17
298	Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova. Nature Astronomy, 2022, 6, 568-576.	10.1	17
299	Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions. Astronomy and Astrophysics, 2021, 654, A157.	5.1	16
300	The rise and fall of an extraordinary Ca-rich transient. Astronomy and Astrophysics, 2020, 635, A186.	5.1	15
301	MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL. Astrophysical Journal, 2012, 746, 127.	4.5	14
302	Metallicity from Type II supernovae from the (i)PTF. Astronomy and Astrophysics, 2016, 587, L7.	5.1	14
303	PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonovae. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4213-4228.	4.4	13
304	OGLE-2009-BLG-076S: THE MOST METAL-POOR DWARF STAR IN THE GALACTIC BULGE. Astrophysical Journal, 2009, 699, L174-L177.	4.5	12
305	A Spectroscopic Search for White Dwarf Companions to 101 Nearby M Dwarfs*. Astrophysical Journal, 2017, 850, 34.	4.5	12
306	KSP-SN-2016kf: A Long-rising H-rich Type II Supernova with Unusually High ⁵⁶ Ni Mass Discovered in the KMTNet Supernova Program. Astrophysical Journal, 2019, 881, 22.	4.5	12

#	Article	IF	CITATIONS
307	RINGO3 polarimetry of very young ZTF supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 503, 312-323.	4.4	12
308	A catalogue of over 10 million variable source candidates in ZTF Data Release 1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5782-5790.	4.4	11
309	Spectral models for early time SN 2011fe observations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2549-2556.	4.4	10
310	LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2463-2480.	4.4	10
311	Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4705-4717.	4.4	10
312	The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. Monthly Notices of the Royal Astronomical Society, 2020, 497, 361-377.	4.4	10
313	SN 2018ijp: the explosion of a stripped-envelope star within a dense H-rich shell?. Astronomy and Astrophysics, 2021, 650, A174.	5.1	10
314	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	4.5	10
315	Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	4.5	9
316	SOXS: a wide band spectrograph to follow up transients. , 2018, , .		9
317	On the Origin of SN 2016hil—A Type II Supernova in the Remote Outskirts of an Elliptical Host. Astrophysical Journal, 2019, 887, 127.	4.5	8
318	OGLE-2013-BLG-0911Lb: A Secondary on the Brown-dwarf Planet Boundary around an M Dwarf. Astronomical Journal, 2020, 159, 76.	4.7	8
319	Gravitational Microlensing Events from the First Year of the Northern Galactic Plane Survey by the Zwicky Transient Facility. Research Notes of the AAS, 2020, 4, 13.	0.7	8
320	AT 2018lqh and the Nature of the Emerging Population of Day-scale Duration Optical Transients. Astrophysical Journal, 2021, 922, 247.	4.5	8
321	SNÂ2017ivv: two years of evolution of a transitional Type II supernova. Monthly Notices of the Royal Astronomical Society, 2020, 499, 974-992.	4.4	7
322	The GN-z11-Flash Event can be a Satellite Glint. Research Notes of the AAS, 2021, 5, 27.	0.7	7
323	The Weizmann Fast Astronomical Survey Telescope (W-FAST): System Overview. Publications of the Astronomical Society of the Pacific, 2021, 133, 075002.	3.1	7
324	PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3542-3556.	4.4	6

#	Article	IF	CITATIONS
325	Proper Motions with Subaru I. Methods and a First Sample in the Subaru Deep Field. Publication of the Astronomical Society of Japan, 2009, 61, 97-107.	2.5	4
326	Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1848-1856.	4.4	4
327	Type Ia supernovae with and without blueshifted narrow Na iÂD lines – how different is their structure?. Monthly Notices of the Royal Astronomical Society, 2017, 471, 491-506.	4.4	4
328	Observational and Physical Classification of Supernovae. , 2016, , 1-43.		4
329	SUPERNOVA 2003ie WAS LIKELY A FAINT TYPE IIP EVENT. Astronomical Journal, 2013, 145, 99.	4.7	3
330	The Multiplexed Imaging Method: High-Resolution Wide Field Imaging Using Physically Small Detectors. Publications of the Astronomical Society of the Pacific, 2014, 126, 148-157.	3.1	3
331	Pair-Instability Explosions: observational evidence. Proceedings of the International Astronomical Union, 2011, 7, 253-260.	0.0	2
332	Super supernovae. Scientific American, 2012, 306, 44-9.	1.0	2
333	The GALEX-PTF Experiment. II. Supernova Progenitor Radius and Energetics via Shock-cooling Modeling. Astrophysical Journal, 2022, 931, 71.	4.5	2
334	Supernova rates in Abell galaxy clusters and implications for metallicity. AIP Conference Proceedings, 2000, , .	0.4	1
335	Supernovae in Galaxy Clusters. International Astronomical Union Colloquium, 2005, 192, 367-371.	0.1	1
336	Supernovae in Galaxy Clusters. , 2005, , 367-371.		1
337	Pair-instability and super-luminous supernova discoveries at z = 2.05, z = 2.50, and z = 3.90. AIP Conference Proceedings, 2012, , .	0.4	1
338	Multiplexed astronomical images: advantages, method, and prototype instrument. Proceedings of SPIE, 2014, , .	0.8	1
339	A Six-year Image-subtraction Light Curve of SN 2010jl. Publications of the Astronomical Society of the Pacific, 2019, 131, 054204.	3.1	1
340	Characterization of Supernovae Based on the Spectral–Temporal Energy Distribution: Two Possible SN Ib Subtypes. Astrophysical Journal, 2022, 930, 31.	4.5	1
341	Constraints on SN Ia Progenitors and ICM Enrichment from Field and Cluster SN Rates. International Astronomical Union Colloquium, 2005, 192, 561-565.	0.1	0
342	Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium. Proceedings of the International Astronomical Union, 2015, 11, 237-237.	0.0	0

#	Article	IF	CITATIONS
343	Constraints on SN la Progenitors and ICM Enrichment from Field and Cluster SN Rates. , 2005, , 561-565.		0