Paolo Serafini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis. Cell Death and Differentiation, 2022, 29, 420-438.	11.2	14
2	CCR1 and CCR5 mediate cancer-induced myelopoiesis and differentiation of myeloid cells in the tumor. , 2022, 10, e003131.		15
3	RNA aptamers specific for transmembrane p24 trafficking protein 6 and Clusterin for the targeted delivery of imaging reagents and RNA therapeutics to human β cells. Nature Communications, 2022, 13, 1815.	12.8	6
4	Editorial: Roles of Tumor-Recruited Myeloid Cells in Immune Evasion in Cancer. Frontiers in Immunology, 2021, 12, 749605.	4.8	2
5	Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Science Translational Medicine, 2020, 12, .	12.4	21
6	The Reversal of Immune Exclusion Mediated by Tadalafil and an Anti-tumor Vaccine Also Induces PDL1 Upregulation in Recurrent Head and Neck Squamous Cell Carcinoma: Interim Analysis of a Phase I Clinical Trial. Frontiers in Immunology, 2019, 10, 1206.	4.8	40
7	4PD Functionalized Dendrimers: A Flexible Tool for In Vivo Gene Silencing of Tumor-Educated Myeloid Cells. Journal of Immunology, 2017, 198, 4166-4177.	0.8	23
8	Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy. Vaccines, 2016, 4, 31.	4.4	58
9	G-CSF and Exenatide Might Be Associated with Increased Long-Term Survival of Allogeneic Pancreatic Islet Grafts. PLoS ONE, 2016, 11, e0157245.	2.5	9
10	Tadalafil Augments Tumor Specific Immunity in Patients with Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2015, 21, 30-38.	7.0	158
11	Tadalafil Reduces Myeloid-Derived Suppressor Cells and Regulatory T Cells and Promotes Tumor Immunity in Patients with Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2015, 21, 39-48.	7.0	211
12	Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs). Genomics Data, 2014, 2, 389-392.	1.3	12
13	Human fibrocytic myeloidâ€derived suppressor cells express IDO and promote tolerance via Tregâ€cell expansion. European Journal of Immunology, 2014, 44, 3307-3319.	2.9	104
14	The Immune System in Head and Neck Squamous Cell Carcinoma: Interactions and Therapeutic Opportunities. , 2014, , 275-321.		0
15	Myeloid-Derived Suppressor Cells in Tumor-Induced T Cell Suppression and Tolerance. , 2014, , 99-150.		2
16	Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunologic Research, 2013, 57, 172-184.	2.9	89
17	A Targeted and Adjuvanted Nanocarrier Lowers the Effective Dose of Liposomal Amphotericin B and Enhances Adaptive Immunity in Murine Cutaneous Leishmaniasis. Journal of Infectious Diseases, 2013, 208, 1914-1922.	4.0	56
18	The immune system and head and neck squamous cell carcinoma: from carcinogenesis to new therapeutic opportunities. Immunologic Research, 2013, 57, 52-69.	2.9	37

PAOLO SERAFINI

#	Article	IF	CITATIONS
19	FOXP3 Subcellular Localization Predicts Recurrence in Oral Squamous Cell Carcinoma. PLoS ONE, 2013, 8, e71908.	2.5	25
20	Aptamer-Mediated Blockade of IL4Rα Triggers Apoptosis of MDSCs and Limits Tumor Progression. Cancer Research, 2012, 72, 1373-1383.	0.9	173
21	Peptide-Conjugated PAMAM Dendrimer as a Universal DNA Vaccine Platform to Target Antigen-Presenting Cells. Cancer Research, 2011, 71, 7452-7462.	0.9	95
22	Editorial: PGE2-producing MDSC: a role in tumor progression?. Journal of Leukocyte Biology, 2010, 88, 827-829.	3.3	30
23	Tumorâ€induced tolerance and immune suppression by myeloid derived suppressor cells. Immunological Reviews, 2008, 222, 162-179.	6.0	569
24	Myeloid-Derived Suppressor Cells Promote Cross-Tolerance in B-Cell Lymphoma by Expanding Regulatory T Cells. Cancer Research, 2008, 68, 5439-5449.	0.9	617
25	Myeloid-Derived Suppressor Cells in Cancer. , 2008, , 157-195.		3
26	Myeloid suppressor cells in cancer: Recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 2006, 16, 53-65.	9.6	690
27	Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. Journal of Experimental Medicine, 2006, 203, 2691-2702.	8.5	683
28	Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. Journal of Clinical Investigation, 2006, 116, 2777-2790.	8.2	723
29	Activated Marrow-Infiltrating Lymphocytes Effectively Target Plasma Cells and Their Clonogenic Precursors. Cancer Research, 2005, 65, 2026-2034.	0.9	111
30	Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4185-4190.	7.1	271
31	High-Dose Granulocyte-Macrophage Colony-Stimulating Factor-Producing Vaccines Impair the Immune Response through the Recruitment of Myeloid Suppressor Cells. Cancer Research, 2004, 64, 6337-6343.	0.9	477
32	Therapeutic Effectiveness of Recombinant Cancer Vaccines Is Associated with a Prevalent T-Cell Receptor α Usage by Melanoma-specific CD8+ T Lymphocytes. Cancer Research, 2004, 64, 8068-8076.	0.9	22
33	Derangement of immune responses by myeloid suppressor cells. Cancer Immunology, Immunotherapy, 2004, 53, 64-72.	4.2	321
34	L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends in Immunology, 2003, 24, 301-305.	6.8	508
35	IL-4-Induced Arginase 1 Suppresses Alloreactive T Cells in Tumor-Bearing Mice. Journal of Immunology, 2003, 170, 270-278.	0.8	445
36	Effective Genetic Vaccination with a Widely Shared Endogenous Retroviral Tumor Antigen Requires CD40 Stimulation during Tumor Rejection Phase. Journal of Immunology, 2003, 171, 6396-6405.	0.8	39

PAOLO SERAFINI

#	Article	IF	CITATIONS
37	Myeloid Suppressor Lines Inhibit T Cell Responses by an NO-Dependent Mechanism. Journal of Immunology, 2002, 168, 689-695.	0.8	585
38	Tumor-Induced Immune Dysfunctions Caused by Myeloid Suppressor Cells. Journal of Immunotherapy, 2001, 24, 431-446.	2.4	234
39	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	1.4	474
40	Immortalized Myeloid Suppressor Cells Trigger Apoptosis in Antigen-Activated T Lymphocytes. Journal of Immunology, 2000, 165, 6723-6730.	0.8	146
41	Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+T cells. Blood, 2000, 96, 3838-3846.	1.4	54