
## Sian E Harding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144215/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain<br>catecholamine-induced acute myocardial stunning. Nature Clinical Practice Cardiovascular Medicine,<br>2008, 5, 22-29.                      | 3.3  | 694       |
| 2  | High Levels of Circulating Epinephrine Trigger Apical Cardiodepression in a β <sub>2</sub> -Adrenergic<br>Receptor/G <sub>i</sub> –Dependent Manner. Circulation, 2012, 126, 697-706.                                            | 1.6  | 625       |
| 3  | β <sub>2</sub> -Adrenergic Receptor Redistribution in Heart Failure Changes cAMP Compartmentation.<br>Science, 2010, 327, 1653-1657.                                                                                             | 12.6 | 505       |
| 4  | Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 2008, 29, 47-57.                                                                    | 11.4 | 460       |
| 5  | Restoration of Contractile Function in Isolated Cardiomyocytes From Failing Human Hearts by Gene<br>Transfer of SERCA2a. Circulation, 1999, 100, 2308-2311.                                                                      | 1.6  | 454       |
| 6  | Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet, The, 2004, 363, 203-209.                                                                                                                  | 13.7 | 378       |
| 7  | Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing<br>human and rat heart. Proceedings of the National Academy of Sciences of the United States of<br>America, 2009, 106, 6854-6859. | 7.1  | 334       |
| 8  | Biomaterials in cardiac tissue engineering: Ten years of research survey. Materials Science and<br>Engineering Reports, 2008, 59, 1-37.                                                                                          | 31.8 | 315       |
| 9  | Targeting Phospholamban by Gene Transfer in Human Heart Failure. Circulation, 2002, 105, 904-907.                                                                                                                                | 1.6  | 261       |
| 10 | A conducting polymer with enhanced electronic stability applied in cardiac models. Science Advances, 2016, 2, e1601007.                                                                                                          | 10.3 | 173       |
| 11 | Simultaneous Measurement of Ca2+ and Cellular Dynamics: Combined Scanning Ion Conductance and Optical Microscopy to Study Contracting Cardiac Myocytes. Biophysical Journal, 2001, 81, 1759-1764.                                | 0.5  | 170       |
| 12 | An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 2010, 31, 3885-3893.                                                                                  | 11.4 | 168       |
| 13 | Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating<br>Myocardial Infarction. Advanced Functional Materials, 2018, 28, 1800618.                                                            | 14.9 | 167       |
| 14 | The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials, 2013, 34, 2399-2411.                                                       | 11.4 | 154       |
| 15 | Myocardial tissue engineering. British Medical Bulletin, 2008, 87, 31-47.                                                                                                                                                        | 6.9  | 150       |
| 16 | SERCA2a Gene Transfer Decreases Sarcoplasmic Reticulum Calcium Leak and Reduces Ventricular<br>Arrhythmias in a Model of Chronic Heart Failure. Circulation: Arrhythmia and Electrophysiology,<br>2011, 4, 362-372.              | 4.8  | 147       |
| 17 | Modulation of human embryonic stem cell-derived cardiomyocyte growth: A testbed for studying<br>human cardiac hypertrophy?. Journal of Molecular and Cellular Cardiology, 2011, 50, 367-376.                                     | 1.9  | 130       |
| 18 | SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent<br>pathway. European Heart Journal, 2012, 33, 1067-1075.                                                                        | 2.2  | 130       |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium. Nature Communications, 2015, 6, 6930.                                                                                         | 12.8 | 130       |
| 20 | Iron Particles for Noninvasive Monitoring of Bone Marrow Stromal Cell Engraftment into, and<br>Isolation of Viable Engrafted Donor Cells from, the Heart. Stem Cells, 2006, 24, 1968-1975.                                        | 3.2  | 123       |
| 21 | Sarcolemmal Na+/H+ exchanger activity and expression in human ventricular myocardium. Journal of<br>the American College of Cardiology, 2000, 36, 534-540.                                                                        | 2.8  | 117       |
| 22 | Ion Channels in Small Cells and Subcellular Structures Can Be Studied with a Smart Patch-Clamp<br>System. Biophysical Journal, 2002, 83, 3296-3303.                                                                               | 0.5  | 116       |
| 23 | Ca <sup>2+</sup> Cycling and New Therapeutic Approaches for Heart Failure. Circulation, 2010, 121, 822-830.                                                                                                                       | 1.6  | 111       |
| 24 | Evidence for protein phosphatase inhibitorâ€1 playing an amplifier role in βâ€adrenergic signaling in<br>cardiac myocytes. FASEB Journal, 2003, 17, 1-23.                                                                         | 0.5  | 106       |
| 25 | Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling. Journal of Molecular and Cellular Cardiology, 2014, 67, 38-48.                                                          | 1.9  | 103       |
| 26 | Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels<br>Improve Rat Heart Function Post Myocardial Infarction. Stem Cell Reports, 2017, 9, 1415-1422.                                      | 4.8  | 103       |
| 27 | Use of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Preclinical Cancer Drug<br>Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circulation<br>Research, 2019, 125, e75-e92.  | 4.5  | 103       |
| 28 | Plasticity of Surface Structures and β <sub>2</sub> -Adrenergic Receptor Localization in Failing<br>Ventricular Cardiomyocytes During Recovery From Heart Failure. Circulation: Heart Failure, 2012, 5,<br>357-365.               | 3.9  | 102       |
| 29 | Hierarchical statistical techniques are necessary to draw reliable conclusions from analysis of isolated cardiomyocyte studies. Cardiovascular Research, 2017, 113, 1743-1752.                                                    | 3.8  | 102       |
| 30 | Specific β 2 AR Blocker ICI 118,551 Actively Decreases Contraction Through a G i -Coupled Form of the β 2<br>AR in Myocytes From Failing Human Heart. Circulation, 2002, 105, 2497-2503.                                          | 1.6  | 100       |
| 31 | The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. , 2007, 113, 341-353.                                                                                                                             |      | 82        |
| 32 | Quantifying the Release of Biomarkers of Myocardial Necrosis from Cardiac Myocytes and Intact<br>Myocardium. Clinical Chemistry, 2017, 63, 990-996.                                                                               | 3.2  | 81        |
| 33 | SERCA2a Overexpression Decreases the Incidence of Aftercontractions in Adult Rabbit Ventricular<br>Myocytes. Journal of Molecular and Cellular Cardiology, 2001, 33, 1005-1015.                                                   | 1.9  | 80        |
| 34 | Highâ€resolution scanning patchâ€clamp: new insights into cell function. FASEB Journal, 2002, 16, 748-750.                                                                                                                        | 0.5  | 77        |
| 35 | Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H533-H542. | 3.2  | 76        |
| 36 | Myocardial depressant effects of interleukin 6 in meningococcal sepsis are regulated by p38 mitogen-activated protein kinase*. Critical Care Medicine, 2011, 39, 1692-1711.                                                       | 0.9  | 75        |

| #  | Article                                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in<br>Cardiovascular Medicine, 2020, 7, 554597.                                                                                                                                                 | 2.4  | 74        |
| 38 | Magnetic Resonance Imaging Evaluation of Remodeling by Cardiac Elastomeric Tissue Scaffold<br>Biomaterials in a Rat Model of Myocardial Infarction. Tissue Engineering - Part A, 2010, 16, 3395-3402.                                                                                           | 3.1  | 73        |
| 39 | Flecainide reduces Ca2+ spark and wave frequency via inhibition of the sarcolemmal sodium current.<br>Cardiovascular Research, 2013, 98, 286-296.                                                                                                                                               | 3.8  | 73        |
| 40 | Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition. Cardiovascular Research, 2018, 114, 1445-1461.                                                                                          | 3.8  | 71        |
| 41 | Changes in sarcolemmal Ca entry and sarcoplasmic reticulum Ca content in ventricular myocytes<br>from patients with end-stage heart failure following myocardial recovery after combined<br>pharmacological and ventricular assist device therapy. European Heart Journal, 2003, 24, 1329-1339. | 2.2  | 69        |
| 42 | Biomimetic electromechanical stimulation to maintain adult myocardial slices in vitro. Nature Communications, 2019, 10, 2168.                                                                                                                                                                   | 12.8 | 68        |
| 43 | Taurocholate induces changes in rat cardiomyocyte contraction and calcium dynamics. Clinical Science, 2002, 103, 191-200.                                                                                                                                                                       | 4.3  | 67        |
| 44 | MAP4K4 Inhibition Promotes Survival of Human Stem Cell-Derived Cardiomyocytes and Reduces Infarct<br>Size InÂVivo. Cell Stem Cell, 2019, 24, 579-591.e12.                                                                                                                                       | 11.1 | 66        |
| 45 | Characterization of a myocardial depressant factor in meningococcal septicemia*. Critical Care<br>Medicine, 2002, 30, 2191-2198.                                                                                                                                                                | 0.9  | 61        |
| 46 | Scanning ion conductance microscopy: a convergent high-resolution technology for<br>multi-parametric analysis of living cardiovascular cells. Journal of the Royal Society Interface, 2011, 8,<br>913-925.                                                                                      | 3.4  | 61        |
| 47 | The case for induced pluripotent stem cellâ€derived cardiomyocytes in pharmacological screening.<br>British Journal of Pharmacology, 2013, 169, 304-317.                                                                                                                                        | 5.4  | 59        |
| 48 | Innate Immunity in Human Embryonic Stem Cells: Comparison with Adult Human Endothelial Cells.<br>PLoS ONE, 2010, 5, e10501.                                                                                                                                                                     | 2.5  | 56        |
| 49 | Molecular Mechanism of the E99K Mutation in Cardiac Actin (ACTC Gene) That Causes Apical<br>Hypertrophy in Man and Mouse. Journal of Biological Chemistry, 2011, 286, 27582-27593.                                                                                                              | 3.4  | 56        |
| 50 | Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Human Molecular Genetics, 2017, 26, 3031-3045.                                                                                                         | 2.9  | 56        |
| 51 | Myocardial Dysfunction in Donor Hearts. Circulation, 1999, 99, 2565-2570.                                                                                                                                                                                                                       | 1.6  | 55        |
| 52 | Effects of Na+/Ca2+-exchanger Overexpression on Excitation–contraction Coupling in Adult Rabbit<br>Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 2002, 34, 389-400.                                                                                                       | 1.9  | 55        |
| 53 | A novel Z-groove index characterizing myocardial surface structure. Cardiovascular Research, 2006,<br>72, 422-429.                                                                                                                                                                              | 3.8  | 55        |
| 54 | Redox Regulation of Cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) Controls p38-MAPK<br>(Mitogen-Activated Protein Kinase) and Orchestrates Cardiac Remodeling to Hypertension.<br>Hypertension, 2020, 76, 1208-1218.                                                                      | 2.7  | 54        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Investigation of a transgenic mouse model of familial dilated cardiomyopathy. Journal of Molecular<br>and Cellular Cardiology, 2010, 49, 380-389.                                                                                                  | 1.9 | 53        |
| 56 | T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovascular Research, 2017, 113, 770-782.                                                                 | 3.8 | 53        |
| 57 | Sensitization of Human Atrial 5-HT 4 Receptors by Chronic β-Blocker Treatment. Circulation, 1995, 92, 2526-2539.                                                                                                                                   | 1.6 | 53        |
| 58 | Altered mechanical properties and intracellular calcium signaling in cardiomyocytes from annexin 6<br>nullâ€mutant mice. FASEB Journal, 2002, 16, 622-624.                                                                                         | 0.5 | 52        |
| 59 | Investigation of cardiac fibroblasts using myocardial slices. Cardiovascular Research, 2018, 114, 77-89.                                                                                                                                           | 3.8 | 52        |
| 60 | Overwhelming Evidence of the Beneficial Effects of SERCA Gene Transfer in Heart Failure. Circulation<br>Research, 2001, 88, E66-7.                                                                                                                 | 4.5 | 51        |
| 61 | Cardiomyocyte Membrane Structure and cAMP Compartmentation Produce Anatomical Variation in β2AR-cAMP Responsiveness in Murine Hearts. Cell Reports, 2018, 23, 459-469.                                                                             | 6.4 | 51        |
| 62 | Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation<br>Unveil Differential Functional Deficits. Stem Cell Reports, 2018, 11, 1226-1243.                                                               | 4.8 | 51        |
| 63 | Cell geometry and contractile abnormalities of myocytes from failing human left ventricle.<br>Cardiovascular Research, 1995, 30, 281-290.                                                                                                          | 3.8 | 50        |
| 64 | Poly(3-hydroxyoctanoate), a promising new material for cardiac tissue engineering. Journal of Tissue<br>Engineering and Regenerative Medicine, 2018, 12, e495-e512.                                                                                | 2.7 | 50        |
| 65 | Spatial control of the βAR system in heart failure: the transverse tubule and beyond. Cardiovascular<br>Research, 2013, 98, 216-224.                                                                                                               | 3.8 | 49        |
| 66 | The adaptive immune response to cardiac injury—the true roadblock to effective regenerative therapies?. Npj Regenerative Medicine, 2017, 2, 19.                                                                                                    | 5.2 | 49        |
| 67 | Cross-Priming Dendritic Cells Exacerbate Immunopathology After Ischemic Tissue Damage in the Heart.<br>Circulation, 2021, 143, 821-836.                                                                                                            | 1.6 | 49        |
| 68 | Aberrant α-Adrenergic Hypertrophic Response in Cardiomyocytes from Human Induced Pluripotent<br>Cells. Stem Cell Reports, 2014, 3, 905-914.                                                                                                        | 4.8 | 46        |
| 69 | Cardiostimulant and cardiodepressant effects through overexpressed human β2-adrenoceptors in<br>murine heart: regional differences and functional role of β1-adrenoceptors. Naunyn-Schmiedeberg's<br>Archives of Pharmacology, 2003, 367, 380-390. | 3.0 | 45        |
| 70 | Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease. DMM Disease Models and Mechanisms, 2017, 10, 259-270.                               | 2.4 | 45        |
| 71 | The effect of Gi-protein inactivation on basal, and β1 - and β2 AR-stimulated contraction of myocytes<br>from transgenic mice overexpressing the β2 -adrenoceptor. British Journal of Pharmacology, 2000, 131,<br>594-600.                         | 5.4 | 44        |
| 72 | Functional alterations in adult rat myocytes after overexpression of phospholamban with use of adenovirus. Physiological Genomics, 1999, 1, 41-50.                                                                                                 | 2.3 | 42        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Sarcoplasmic Reticulum Ca Content, Sarcolemmal Ca Influx and the Genesis of Arrhythmias in Isolated<br>Guinea-pig Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2000, 32, 261-272. | 1.9 | 42        |
| 74 | Assessment of cellular toxicity of TiO <sub>2</sub> nanoparticles for cardiac tissue engineering applications. Nanotoxicology, 2011, 5, 372-380.                                                   | 3.0 | 42        |
| 75 | The molecular phenotype of human cardiac myosin associated with hypertrophic obstructive cardiomyopathy. Cardiovascular Research, 2008, 79, 481-491.                                               | 3.8 | 41        |
| 76 | Overexpression of wildâ€ŧype Gαiâ€⊋ suppresses βâ€adrenergic signaling in cardiac myocytes. FASEB Journal,<br>2003, 17, 1-23.                                                                      | 0.5 | 40        |
| 77 | <scp>SERCA2a</scp> gene therapy in heart failure: an antiâ€arrhythmic positive inotrope. British Journal of Pharmacology, 2014, 171, 38-54.                                                        | 5.4 | 36        |
| 78 | High speed sCMOS-based oblique plane microscopy applied to the study of calcium dynamics in cardiac myocytes. Journal of Biophotonics, 2016, 9, 311-323.                                           | 2.3 | 36        |
| 79 | Development of High Content Imaging Methods for Cell Death Detection in Human Pluripotent Stem<br>Cell-Derived Cardiomyocytes. Journal of Cardiovascular Translational Research, 2012, 5, 593-604. | 2.4 | 35        |
| 80 | Loss of β-adrenoceptor response in myocytes overexpressing the Na+/Ca2+-exchanger. Journal of Molecular and Cellular Cardiology, 2004, 36, 43-48.                                                  | 1.9 | 34        |
| 81 | Are there functional β <sub>3</sub> â€adrenoceptors in the human heart?. British Journal of<br>Pharmacology, 2011, 162, 817-822.                                                                   | 5.4 | 34        |
| 82 | Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Molecular Medicine, 2021, 13, e13074.                                                     | 6.9 | 34        |
| 83 | Cardiovascular and hormonal effects of calcitonin gene-related peptide in congestive heart failure.<br>Journal of the American College of Cardiology, 1991, 17, 208-217.                           | 2.8 | 33        |
| 84 | Stem cellâ€derived endothelial cells for cardiovascular disease: a therapeutic perspective. British<br>Journal of Clinical Pharmacology, 2013, 75, 897-906.                                        | 2.4 | 33        |
| 85 | The Current and Future Landscape of SERCA Gene Therapy for Heart Failure: A Clinical Perspective.<br>Human Gene Therapy, 2015, 26, 293-304.                                                        | 2.7 | 33        |
| 86 | Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy.<br>Cardiovascular Research, 2016, 110, 238-248.                                                                 | 3.8 | 31        |
| 87 | Taurocholate induces changes in rat cardiomyocyte contraction and calcium dynamics. Clinical Science, 2002, 103, 191.                                                                              | 4.3 | 30        |
| 88 | Circulating microRNAs predispose to takotsubo syndrome following high-dose adrenaline exposure.<br>Cardiovascular Research, 2022, 118, 1758-1770.                                                  | 3.8 | 30        |
| 89 | Reduced contractile responses to forskolin and a cyclic AMP analogue in myocytes from failing human ventricle. European Journal of Pharmacology, 1992, 223, 39-48.                                 | 3.5 | 29        |
| 90 | The Role of Gi-proteins andβ-Adrenoceptors in the Age-related Decline of Contraction in Guinea-pig<br>Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1997, 29, 439-448.       | 1.9 | 29        |

| #   | Article                                                                                                                                                                                                                                                                      | IF    | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 91  | Embryonic stem cellâ€derived cardiomyocytes as a model to study fetal arrhythmia related to maternal<br>disease. Journal of Cellular and Molecular Medicine, 2009, 13, 3730-3741.                                                                                            | 3.6   | 29        |
| 92  | Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart. Journal of Cellular and Molecular Medicine, 2021, 25, 229-243.                                                                   | 3.6   | 28        |
| 93  | $\hat{I}^2$ 3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes. ELife, 2020, 9, .                                                                                                                                                       | 6.0   | 28        |
| 94  | Mentoring perception, scientific collaboration and research performance: is there a â€~gender gap' in<br>academic medicine? An Academic Health Science Centre perspective. Postgraduate Medical Journal,<br>2016, 92, 581-586.                                               | 1.8   | 27        |
| 95  | Concise Review: Pluripotent Stem Cell-Derived Cardiac Cells, A Promising Cell Source for Therapy of<br>Heart Failure: Where Do We Stand?. Stem Cells, 2016, 34, 34-43.                                                                                                       | 3.2   | 27        |
| 96  | Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering.<br>ACS Applied Materials & Interfaces, 2021, 13, 32624-32639.                                                                                                                | 8.0   | 27        |
| 97  | Overexpression of <i>β</i> <sub>1</sub> â€adrenoceptors in adult rat ventricular myocytes enhances CGP<br>12177A cardiostimulation: implications for â€~putative' <i>β</i> <sub>4</sub> â€adrenoceptor pharmacology.<br>British Journal of Pharmacology, 2004, 141, 813-824. | . 5.4 | 26        |
| 98  | Takotsubo Cardiomyopathy and Sepsis. Angiology, 2017, 68, 288-303.                                                                                                                                                                                                           | 1.8   | 26        |
| 99  | Functional Characterization of Embryonic Stem Cell-Derived Cardiomyocytes Using Scanning Ion<br>Conductance Microscopy. Tissue Engineering, 2006, 12, 657-664.                                                                                                               | 4.6   | 24        |
| 100 | The potential of cardiac stem cell therapy for heart failure. Current Opinion in Pharmacology, 2007, 7,<br>164-170.                                                                                                                                                          | 3.5   | 24        |
| 101 | Computational modeling of Takotsubo cardiomyopathy: effect of spatially varying β-adrenergic stimulation in the rat left ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1487-H1496.                                               | 3.2   | 24        |
| 102 | Remodelling of adult cardiac tissue subjected to physiological and pathological mechanical load<br><i>in vitro</i> . Cardiovascular Research, 2022, 118, 814-827.                                                                                                            | 3.8   | 24        |
| 103 | Non-invasive Imaging of Stem Cells by Scanning Ion Conductance Microscopy: Future Perspective.<br>Tissue Engineering - Part C: Methods, 2008, 14, 311-318.                                                                                                                   | 2.1   | 23        |
| 104 | Nuclear pore rearrangements and nuclear trafficking in cardiomyocytes from rat and human failing hearts. Cardiovascular Research, 2015, 105, 31-43.                                                                                                                          | 3.8   | 23        |
| 105 | Repolarization abnormalities unmasked with exercise in sudden cardiac death survivors with structurally normal hearts. Journal of Cardiovascular Electrophysiology, 2018, 29, 115-126.                                                                                       | 1.7   | 23        |
| 106 | In vivo grafting of large engineered heart tissue patches for cardiac repair. JCI Insight, 2021, 6, .                                                                                                                                                                        | 5.0   | 23        |
| 107 | Murine ventricular L-type Ca2+ current is enhanced by zinterol via β1 -adrenoceptors, and is reduced in TG4 mice overexpressing the human β2 -adrenoceptor. British Journal of Pharmacology, 2001, 133, 73-82.                                                               | 5.4   | 21        |
| 108 | An antiadrenergic effect of adenosine on guinea-pig but not rabbit ventricles. European Journal of<br>Pharmacology, 1987, 137, 67-75.                                                                                                                                        | 3.5   | 20        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Contraction of cardiac myocytes from noradrenaline-treated rats in response to isoprenaline,<br>forskolin and dibutyryl cAMP. European Journal of Pharmacology, 1990, 191, 129-140.                                        | 3.5 | 19        |
| 110 | Signaling Via PI3K/FOXO1A Pathway Modulates Formation and Survival of Human Embryonic Stem Cell-Derived Endothelial Cells. Stem Cells and Development, 2015, 24, 869-878.                                                  | 2.1 | 18        |
| 111 | Takotsubo Syndrome. JACC Basic To Translational Science, 2018, 3, 779-781.                                                                                                                                                 | 4.1 | 18        |
| 112 | Intact myocardial preparations reveal intrinsic transmural heterogeneity in cardiac mechanics.<br>Journal of Molecular and Cellular Cardiology, 2020, 141, 11-16.                                                          | 1.9 | 18        |
| 113 | Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable<br>Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes. PLoS ONE, 2015, 10,<br>e0126860.             | 2.5 | 17        |
| 114 | Electrical stimulation applied during differentiation drives the hiPSC-CMs towards a mature cardiac conduction-like cells. Biochemical and Biophysical Research Communications, 2020, 533, 376-382.                        | 2.1 | 17        |
| 115 | Gi-dependent suppression of β1-adrenoceptor effects in ventricular myocytes from NE-treated guinea pigs. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1807-H1814.                        | 3.2 | 16        |
| 116 | Interaction between increased SERCA2a activity and β-adrenoceptor stimulation in adult rabbit<br>myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2450-H2457.                      | 3.2 | 16        |
| 117 | Gene transfer in cardiac myocytes. Surgical Clinics of North America, 2004, 84, 141-159.                                                                                                                                   | 1.5 | 16        |
| 118 | Pathogen Sensing Pathways in Human Embryonic Stem Cell Derived-Endothelial Cells: Role of NOD1<br>Receptors. PLoS ONE, 2014, 9, e91119.                                                                                    | 2.5 | 16        |
| 119 | Advances in Tissue Engineering. , 2008, , .                                                                                                                                                                                |     | 16        |
| 120 | Incomplete reversal of βâ€adrenoceptor desensitization in human and guineaâ€pig cardiomyocytes by cyclic<br>nucleotide phosphodiesterase inhibitors. British Journal of Pharmacology, 1993, 109, 1071-1078.                | 5.4 | 15        |
| 121 | Estrogen deficiency compromised the β2AR-Gs/Gi coupling: implications for arrhythmia and cardiac<br>injury. Pflugers Archiv European Journal of Physiology, 2018, 470, 559-570.                                            | 2.8 | 15        |
| 122 | The Effect of Alterations to Action Potential Duration on β-Adrenoceptor-Mediated Aftercontractions<br>in Human and Guinea-pig Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 1997,<br>29, 1457-1467. | 1.9 | 14        |
| 123 | Functionally Conserved Noncoding Regulators of Cardiomyocyte Proliferation and Regeneration in Mouse and Human. Circulation Genomic and Precision Medicine, 2018, 11, e001805.                                             | 3.6 | 14        |
| 124 | Functional Evidence for a Cyclic-AMP Related Mechanism of Action of the β2-adrenoceptor in Human<br>Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 2000, 32, 1353-1360.                               | 1.9 | 13        |
| 125 | Nitric oxide: not just a negative inotrope. European Journal of Heart Failure, 2001, 3, 527-534.                                                                                                                           | 7.1 | 13        |
| 126 | Nanocomposite Elastomeric Biomaterials for Myocardial Tissue Engineering Using Embryonic Stem<br>Cellâ€derived Cardiomyocytes. Advanced Engineering Materials, 2010, 12, B664.                                             | 3.5 | 13        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | GPER mediates estrogen cardioprotection against epinephrine-induced stress. Journal of Endocrinology, 2021, 249, 209-222.                                                                                | 2.6 | 13        |
| 128 | Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation. Biofabrication, 2021, 13, 025004.                                       | 7.1 | 12        |
| 129 | Title is missing!. Molecular and Cellular Biochemistry, 2003, 251, 103-109.                                                                                                                              | 3.1 | 11        |
| 130 | ?-Adrenoceptor Blockers as Agonists: Coupling of ?2-Adrenoceptors to Multiple G-Proteins in the Failing Human Heart. Congestive Heart Failure, 2004, 10, 181-187.                                        | 2.0 | 11        |
| 131 | G-protein Coupled Receptor Signaling in Pluripotent Stem Cell-derived Cardiovascular Cells:<br>Implications for Disease Modeling. Frontiers in Cell and Developmental Biology, 2015, 3, 76.              | 3.7 | 11        |
| 132 | Proteomic Analysis Reveals Temporal Changes in Protein Expression in Human Induced Pluripotent<br>Stem Cell-Derived Cardiomyocytes In Vitro. Stem Cells and Development, 2019, 28, 565-578.              | 2.1 | 11        |
| 133 | Future potential of engineered heart tissue patches for repairing the damage caused by heart attacks.<br>Expert Review of Medical Devices, 2020, 17, 1-3.                                                | 2.8 | 10        |
| 134 | Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of β2AR-cAMP<br>Signalling. Cells, 2020, 9, 2275.                                                                            | 4.1 | 10        |
| 135 | Mediastinal Lymphadenopathy, Class-Switched Auto-Antibodies and Myocardial Immune-Complexes<br>During Heart Failure in Rodents and Humans. Frontiers in Cell and Developmental Biology, 2020, 8, 695.    | 3.7 | 10        |
| 136 | Development a flexible lightâ€sheet fluorescence microscope for highâ€speed 3D imaging of calcium<br>dynamics and 3D imaging of cellular microstructure. Journal of Biophotonics, 2020, 13, e201960239.  | 2.3 | 10        |
| 137 | Triple mode of action of flecainide in catecholaminergic polymorphic ventricular tachycardia: reply.<br>Cardiovascular Research, 2013, 98, 327-328.                                                      | 3.8 | 9         |
| 138 | Multi-cellularity in cardiac tissue engineering, how close are we to native heart tissue?. Journal of<br>Muscle Research and Cell Motility, 2019, 40, 151-157.                                           | 2.0 | 9         |
| 139 | Cyclic AMP levels in ventricular myocytes from noradrenaline-treated guinea-pigs. European Journal of Pharmacology, 1996, 310, 235-242.                                                                  | 3.5 | 8         |
| 140 | Effect of overexpressed adenylyl cyclase VI on β 1 - and β 2 -adrenoceptor responses in adult rat<br>ventricular myocytes. British Journal of Pharmacology, 2004, 143, 465-476.                          | 5.4 | 8         |
| 141 | Non-invasive detection of exercise-induced cardiac conduction abnormalities in sudden cardiac death survivors in the inherited cardiac conditions. Europace, 2021, 23, 305-312.                          | 1.7 | 8         |
| 142 | Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium<br>to aid non-arrhythmic engineered heart tissue design. PLoS Computational Biology, 2022, 18, e1010030. | 3.2 | 8         |
| 143 | Morphology and vasoactive hormone profiles from endothelial cells derived from stem cells of different sources. Biochemical and Biophysical Research Communications, 2014, 455, 172-177.                 | 2.1 | 7         |
| 144 | IDENTIFICATION AND CHARACTERIZATION OF A DYSFUNCTIONAL CARDIAC MYOCYTE PHENOTYPE: ROLE OF BACTERIA, TOLL-LIKE RECEPTORS, AND ENDOTHELIN. Shock, 2007, 28, 434-440.                                       | 2.1 | 6         |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Authors' response to "Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to<br>explain catecholamine-induced acute myocardial stunning― Nature Clinical Practice Cardiovascular<br>Medicine, 2008, 5, E2-E2.                    | 3.3  | 6         |
| 146 | The Mitochondrial Permeability Transition Pore as a Target for Cardioprotection in Hypertrophic Cardiomyopathy. Cardiovascular Drugs and Therapy, 2013, 27, 235-237.                                                                                 | 2.6  | 6         |
| 147 | Immunosuppressive Agents Modulate Function, Growth, and Survival of Cardiomyocytes and<br>Endothelial Cells Derived from Human Embryonic Stem Cells. Stem Cells and Development, 2014, 23,<br>467-476.                                               | 2.1  | 6         |
| 148 | Reversible elimination of myofibrillar Ca <sup>2+</sup> sensitivity by diamide and other sulfhydryl reagents: comparison with reversible contracture produced in intact cells. Canadian Journal of Physiology and Pharmacology, 1990, 68, 1170-1175. | 1.4  | 5         |
| 149 | Cardiomyocytes from embryonic stem cells: towards human therapy. Expert Opinion on Biological<br>Therapy, 2008, 8, 1473-1483.                                                                                                                        | 3.1  | 5         |
| 150 | Characterization of acute TLR-7 agonist-induced hemorrhagic myocarditis in mice by multi-parametric quantitative cardiac MRI. DMM Disease Models and Mechanisms, 2019, 12, .                                                                         | 2.4  | 5         |
| 151 | Development of a pro-arrhythmic ex vivo intact human and porcine model: cardiac<br>electrophysiological changes associated with cellular uncoupling. Pflugers Archiv European Journal<br>of Physiology, 2020, 472, 1435-1446.                        | 2.8  | 5         |
| 152 | Contractile effects of adenovirally-mediated increases in SERCA2a activity: A comparison between adult rat and rabbit ventricular myocytes. , 2003, , 103-109.                                                                                       |      | 5         |
| 153 | Functional and Morphological Maturation of Implanted Neonatal Cardiomyocytes as a Comparator for Cell Therapy. Stem Cells and Development, 2010, 19, 1025-1034.                                                                                      | 2.1  | 4         |
| 154 | Human stem cellâ€derived cardiomyocytes for pharmacological and toxicological modeling. Annals of the New York Academy of Sciences, 2011, 1245, 48-49.                                                                                               | 3.8  | 4         |
| 155 | CRISPR/Cas9-mediated generation and analysis of N terminus polymorphic models of β2AR in isogenic<br>hPSC-derived cardiomyocytes. Molecular Therapy - Methods and Clinical Development, 2021, 20, 39-53.                                             | 4.1  | 4         |
| 156 | 3D culturing of human pluripotent stem cells-derived endothelial cells for vascular regeneration.<br>Theranostics, 2022, 12, 4684-4702.                                                                                                              | 10.0 | 4         |
| 157 | Takotsubo Syndrome. JACC Basic To Translational Science, 2018, 3, 227-229.                                                                                                                                                                           | 4.1  | 3         |
| 158 | Ventricular conduction stability test: a method to identify and quantify changes in whole heart activation patterns during physiological stress. Europace, 2019, 21, 1422-1431.                                                                      | 1.7  | 3         |
| 159 | Contractile effects of adenovirally-mediated increases in SERCA2a activity: a comparison between adult rat and rabbit ventricular myocytes. Molecular and Cellular Biochemistry, 2003, 251, 103-9.                                                   | 3.1  | 3         |
| 160 | Modeling Transposition of the Great Arteries with Patient-Specific Induced Pluripotent Stem Cells.<br>International Journal of Molecular Sciences, 2021, 22, 13270.                                                                                  | 4.1  | 3         |
| 161 | Targeting Genes and Cells in the Progression to Heart Failure. Heart Failure Clinics, 2005, 1, 287-301.                                                                                                                                              | 2.1  | 2         |
| 162 | The Failing Cardiomyocyte. Heart Failure Clinics, 2005, 1, 171-181.                                                                                                                                                                                  | 2.1  | 2         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells, 2021, 10, 2456.                                                                                                        | 4.1 | 2         |
| 164 | Rp-cAMPS has ho effect on adenosine A 1 receptors in guinea-pig cardiomyocytes. Basic Research in Cardiology, 2000, 95, 114-118.                                                                      | 5.9 | 1         |
| 165 | Dissociation of hypertrophic growth from changes in myocyte contractile function. Journal of<br>Cardiac Failure, 2002, 8, S415-S420.                                                                  | 1.7 | 1         |
| 166 | Cardiac Stem Cell Therapy and Arrhythmogenicity: Prometheus and the arrows of Apollo and Artemis.<br>Journal of Cardiovascular Translational Research, 2008, 1, 207-216.                              | 2.4 | 1         |
| 167 | Mouse HCM Model Expressing E99K ACTC Mutation Reproduces Phenotypes As Found In Human<br>Patients. Biophysical Journal, 2009, 96, 499a-500a.                                                          | 0.5 | 1         |
| 168 | Large Stem Cell–Derived Cardiomyocyte Grafts: Cellular Ventricular Assist Devices?. Molecular<br>Therapy, 2014, 22, 1240-1242.                                                                        | 8.2 | 1         |
| 169 | Basic Science. , 2008, , 679-694.                                                                                                                                                                     |     | 1         |
| 170 | Myocardial Cell Abnormalities in Heart Failure: Experience from Studies on Single Myocytes.<br>Developments in Cardiovascular Medicine, 1995, , 205-219.                                              | 0.1 | 1         |
| 171 | Effects of endothelin-1 on contractile responses and phosphatidylinositol hydrolysis in isolated myocytes from guinea-pig and rat heart. Journal of Molecular and Cellular Cardiology, 1992, 24, 238. | 1.9 | 0         |
| 172 | Adrenergic Regulation. Advances in Organ Biology, 1998, 4, 81-114.                                                                                                                                    | 0.1 | 0         |
| 173 | Modelling GPCR effects in the cardiomyocyte: A bridge from reconstituted systems to human heart.<br>Journal of Molecular and Cellular Cardiology, 2005, 39, 411-413.                                  | 1.9 | 0         |
| 174 | Refinement of in vivo surgical procedures for cardiac gene and cell transfer in rats. Lab Animal, 2009,<br>38, 94-101.                                                                                | 0.4 | 0         |
| 175 | Frontiers in Cardiovascular Biology: a new federation of European scientists. Future Cardiology, 2010, 6, 765-767.                                                                                    | 1.2 | 0         |
| 176 | Phosphorylation of Excitation-Contraction Coupling Components in a Guinea-Pig Model of Heart<br>Failure. Biophysical Journal, 2010, 98, 302a-303a.                                                    | 0.5 | 0         |
| 177 | Phenotype and Developmental Potential of Cardiomyocytes from Induced Pluripotent Stem Cells and<br>Human Embryonic Stem Cells. , 2011, , 217-238.                                                     |     | 0         |
| 178 | Frontiers in cardiovascular biology: London 2012 – a scientific â€~olympiad'. Future Cardiology, 2012, 8,<br>689-691.                                                                                 | 1.2 | 0         |
| 179 | 146â€Contribution of Conduction and Repolarisation Abnormalities to the Type i Brugada Pattern: A<br>Study Using Non-Invasive Electrocardiographic Imaging. Heart, 2016, 102, A105-A106.              | 2.9 | 0         |
| 180 | The NHLI at Imperial College, London. European Heart Journal, 2017, 38, 2919-2922.                                                                                                                    | 2.2 | 0         |

| #   | Article                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | P147STAT3 mediates differentiation and maintenance of human pluripotent stem-derived endothelial cells. Cardiovascular Research, 2018, 114, S39-S39.               | 3.8 | 0         |
| 182 | Reply to: Estrogens for protection from an index and recurrent episodes of takotsubo syndrome?.<br>Journal of Endocrinology, 2021, 250, L3.                        | 2.6 | 0         |
| 183 | Cardiovascular Gene and Cell Therapy. , 2005, , 763-788.                                                                                                           |     | Ο         |
| 184 | PHARMACOLOGICAL CHARACTERISATION OF EMBRYONIC STEM CELL-DERIVED CARDIOMYOCYTE CULTURES. , 2005, , 139-147.                                                         |     | 0         |
| 185 | Conditioning of human embryonic stem cellâ€derived endothelial cells with PBMCs confers TLR4<br>sensing in coâ€culture conditions. FASEB Journal, 2013, 27, lb614. | 0.5 | Ο         |
| 186 | Stem Cell Therapy to Treat Heart Failure. , 2019, , 286-303.                                                                                                       |     | 0         |
| 187 | Modelling the Effects of Conductive Polymers and Stem Cells Derived Myocytes on Scarred Heart Tissue. , 0, , .                                                     |     | Ο         |
| 188 | High speed imaging of calcium dynamics in cardiomyocytes with a flexible light-sheet fluorescence microscope. , 2021, , .                                          |     | 0         |