
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4144211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Transmission and Distribution Network Coordination to Host More Electric Vehicles and PV. IEEE Systems Journal, 2022, 16, 2705-2716.	4.6	12
2	Optimal Deployment of Mobile MSSSC in Transmission System. Energies, 2022, 15, 3878.	3.1	1
3	Assessing the Scalability and Privacy of Energy Communities by Using a Large-Scale Distributed and Parallel Real-Time Optimization. IEEE Access, 2022, 10, 69771-69787.	4.2	6
4	Resilient Identification of Distribution Network Topology. IEEE Transactions on Power Delivery, 2021, 36, 2332-2342.	4.3	12
5	Technical barriers for harnessing the green hydrogen: A power system perspective. Renewable Energy, 2021, 163, 1580-1587.	8.9	44
6	Renewable Energy and Economic Dispatch Integration Within the Honduras Electricity Market. Engergy Systems in Electrical Engineering, 2021, , 1-34.	0.7	2
7	Gas Network's Impact on Power System Voltage Security. IEEE Transactions on Power Systems, 2021, 36, 5428-5440.	6.5	5
8	A dataâ€driven measurement placement to evaluate the wellâ€being of distribution systems operation. IET Generation, Transmission and Distribution, 2021, 15, 1463-1473.	2.5	3
9	Optimal flexibility coordination for energy procurement in distribution networks. IET Renewable Power Generation, 2021, 15, 1191-1203.	3.1	14
10	Green hydrogen: A new flexibility source for security constrained scheduling of power systems with renewable energies. International Journal of Hydrogen Energy, 2021, 46, 19270-19284.	7.1	52
11	Controllable transmission networks under demand uncertainty with modular FACTS. International Journal of Electrical Power and Energy Systems, 2021, 130, 106978.	5.5	7
12	Transmission expansion planning in presence of electric vehicles at the distribution level. International Transactions on Electrical Energy Systems, 2021, 31, e12769.	1.9	1
13	Uncertainty management in decision-making in power system operation. , 2020, , 41-62.		9
14	Resilient decentralised control of inverterâ€interfaced distributed energy sources in lowâ€voltage distribution grids. IET Smart Grid, 2020, 3, 153-161.	2.2	2
15	Guest Editorial: Unlocking the Full Benefits of TSOâ€DSO Interactions. IET Generation, Transmission and Distribution, 2020, 14, 705-706.	2.5	0
16	Fast Resource Scheduling for Distribution Systems Enabled With Discrete Control Devices. IEEE Systems Journal, 2020, 14, 3767-3778.	4.6	5
17	Strategic Scheduling of Discrete Control Devices in Active Distribution Systems. IEEE Transactions on Power Delivery, 2020, 35, 2285-2299.	4.3	11
18	Distribution System Topology Identification for DER Management Systems Using Deep Neural Networks. , 2020, , .		14

4

#	Article	IF	CITATIONS
19	Power to air transportation via hydrogen. IET Renewable Power Generation, 2020, 14, 3384-3392.	3.1	7
20	Use of fitted polynomials for the decentralised estimation of network variables in unbalanced radial LV feeders. IET Generation, Transmission and Distribution, 2020, 14, 2368-2377.	2.5	2
21	Fault detection in distribution networks in presence of distributed generations using a data mining–driven wavelet transform. IET Smart Grid, 2019, 2, 163-171.	2.2	20
22	optimising Load Flexibility for the Day Ahead in Distribution Networks with Photovoltaics. , 2019, , .		1
23	Decentralised flexibility management for EVs. IET Renewable Power Generation, 2019, 13, 952-960.	3.1	29
24	Application of information gap decision theory in practical energy problems: A comprehensive review. Applied Energy, 2019, 249, 157-165.	10.1	86
25	Smart transformer Modelling in Optimal Power Flow Analysis. , 2019, , .		3
26	Coordination of interdependent natural gas and electricity systems based on information gap decision theory. IET Generation, Transmission and Distribution, 2019, 13, 3362-3369.	2.5	13
27	Information gap decision theory to deal with long-term wind energy planning considering voltage stability. Energy, 2018, 147, 451-463.	8.8	30
28	Probabilistic Under Frequency Load Shedding Considering RoCoF Relays of Distributed Generators. IEEE Transactions on Power Systems, 2018, 33, 3587-3598.	6.5	72
29	Strategic Scheduling in Smart Grids. , 2018, , .		2
30	An auction framework to integrate dynamic transmission expansion planning and pay-as-bid wind connection auctions. Applied Energy, 2018, 228, 2462-2477.	10.1	31
31	Stochastic Real-Time Scheduling of Wind-Thermal Generation Units in an Electric Utility. IEEE Systems Journal, 2017, 11, 1622-1631.	4.6	31
32	Information gap decision theory approach to deal with wind power uncertainty in unit commitment. Electric Power Systems Research, 2017, 145, 137-148.	3.6	114
33	DC constrained fuzzy power flow for transmission expansion planning studies. International Transactions on Electrical Energy Systems, 2017, 27, e2361.	1.9	2
34	Risk Averse Security Constrained Stochastic Congestion Management. Power Electronics and Power Systems, 2017, , 301-334.	0.6	1
35	Information gap decision theory for voltage stability constrained OPF considering the uncertainty of multiple wind farms. IET Renewable Power Generation, 2017, 11, 585-592.	3.1	31

36 Introduction to Programming in GAMS. , 2017, , 1-32.

#	Article	IF	CITATIONS
37	Energy System Integration. , 2017, , 265-292.		1
38	Simple Examples in GAMS. , 2017, , 33-63.		3
39	Power Plant Dispatching. , 2017, , 65-93.		1
40	Unit Commitment. , 2017, , 119-140.		2
41	Multi-Period Optimal Power Flow. , 2017, , 141-173.		1
42	Power System Observability. , 2017, , 203-225.		0
43	Topics in Transmission Operation and Planning. , 2017, , 227-264.		0
44	Resiliency oriented integration of DSRs in transmission networks. IET Generation, Transmission and Distribution, 2017, 11, 2013-2022.	2.5	27
45	Distribution networks' energy losses versus hosting capacity of wind power in the presence of demand flexibility. Renewable Energy, 2017, 102, 316-325.	8.9	55
46	Robust multiâ€objective PQ scheduling for electric vehicles in flexible unbalanced distribution grids. IET Generation, Transmission and Distribution, 2017, 11, 4031-4040.	2.5	27
47	Energy Storage Planning for Resiliency enhancement against Renewable Energy Curtailment. , 2017, , .		3
48	Power System Optimization Modeling in GAMS. , 2017, , .		184
49	Operational Issues in Symmetric Fuzzy Power Flow. International Review on Modelling and Simulations, 2017, 10, 313.	0.3	0
50	Probabilistic security constrained fuzzy power flow models. , 2016, , .		0
51	Information Gap Decision Theory based congestion and voltage management in the presence of uncertain wind power. , 2016, , .		1
52	Robust computational framework for midâ€ŧerm technoâ€economical assessment of energy storage. IET Generation, Transmission and Distribution, 2016, 10, 822-831.	2.5	25
53	Restoration strategy in a self-healing distribution network with DG and flexible loads. , 2016, , .		8
54	Safe operation of transmission system considering EV at distribution level. , 2016, , .		1

#	Article	IF	CITATIONS
55	Distribution Network Operation Under Uncertainty Using Information Gap Decision Theory. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	16
56	Information Gap Decision Theory-Based Congestion and Voltage Management in the Presence of Uncertain Wind Power. IEEE Transactions on Sustainable Energy, 2016, 7, 841-849.	8.8	70
57	Optimal DR and ESS Scheduling for Distribution Losses Payments Minimization Under Electricity Price Uncertainty. IEEE Transactions on Smart Grid, 2016, 7, 261-272.	9.0	131
58	Risk-Averse Preventive Voltage Control of AC/DC Power Systems Including Wind Power Generation. IEEE Transactions on Sustainable Energy, 2015, 6, 1494-1505.	8.8	30
59	Information gap decision theory based OPF with HVDC connected wind farms. , 2015, , .		8
60	Information Gap Decision Theory Based OPF With HVDC Connected Wind Farms. IEEE Transactions on Power Systems, 2015, 30, 3396-3406.	6.5	99
61	Risk Averse Energy Hub Management Considering Plug-in Electric Vehicles Using Information Gap Decision Theory. Power Systems, 2015, , 107-127.	0.5	29
62	Robust optimization based EV charging. , 2014, , .		6
63	Taxonomy of Uncertainty Modeling Techniques in Renewable Energy System Studies. Green Energy and Technology, 2014, , 1-17.	0.6	12
64	Energy Hub Management with Intermittent Wind Power. Green Energy and Technology, 2014, , 413-438.	0.6	35
65	Optimal household energy management using V2H flexibilities. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2014, 33, 777-792.	0.9	23
66	Stochastic Multiperiod OPF Model of Power Systems With HVDC-Connected Intermittent Wind Power Generation. IEEE Transactions on Power Delivery, 2014, 29, 336-344.	4.3	73
67	Smart self-scheduling of Gencos with thermal and energy storage units under price uncertainty. International Transactions on Electrical Energy Systems, 2014, 24, 1401-1418.	1.9	14
68	Risk averse optimal operation of a virtual power plant using two stage stochastic programming. Energy, 2014, 73, 958-967.	8.8	137
69	Corrective Voltage Control Scheme Considering Demand Response and Stochastic Wind Power. IEEE Transactions on Power Systems, 2014, 29, 2965-2973.	6.5	126
70	Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 2013, 28, 376-384.	16.4	379
71	Robust optimization based self scheduling of hydro-thermal Genco in smart grids. Energy, 2013, 61, 262-271.	8.8	86
72	Optimal multiâ€area generation schedule considering renewable resources mix: a realâ€ŧime approach. IET Generation, Transmission and Distribution, 2013, 7, 1011-1026.	2.5	44

#	Article	IF	CITATIONS
73	IGDT Based Robust Decision Making Tool for DNOs in Load Procurement Under Severe Uncertainty. IEEE Transactions on Smart Grid, 2013, 4, 886-895.	9.0	127
74	Nonconvex Dynamic Economic Power Dispatch Problems Solution Using Hybrid Immune-Genetic Algorithm. IEEE Systems Journal, 2013, 7, 777-785.	4.6	76
75	Simultanous emergency demand response programming and unit commitment programming in comparison with interruptible load contracts. IET Generation, Transmission and Distribution, 2012, 6, 605.	2.5	58
76	A Probabilistic Modeling of Photo Voltaic Modules and Wind Power Generation Impact on Distribution Networks. IEEE Systems Journal, 2012, 6, 254-259.	4.6	193
77	Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems. International Journal of Electrical Power and Energy Systems, 2012, 42, 508-516.	5.5	129
78	Possibilistic-Scenario Model for DG Impact Assessment on Distribution Networks in an Uncertain Environment. IEEE Transactions on Power Systems, 2012, 27, 1283-1293.	6.5	151
79	Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch. Energy, 2012, 44, 228-240.	8.8	124
80	Imperialist competition algorithm for distributed generation connections. IET Generation, Transmission and Distribution, 2012, 6, 21.	2.5	23
81	Probabilistic determination of pilot points for zonal voltage control. IET Generation, Transmission and Distribution, 2012, 6, 1.	2.5	37
82	Binary PSO-based dynamic multi-objective model for distributed generation planning under uncertainty. IET Renewable Power Generation, 2012, 6, 67.	3.1	138
83	Probabilistic dynamic multi-objective model for renewable and non-renewable distributed generation planning. IET Generation, Transmission and Distribution, 2011, 5, 1173.	2.5	84
84	Possibilistic Evaluation of Distributed Generations Impacts on Distribution Networks. IEEE Transactions on Power Systems, 2011, 26, 2293-2301.	6.5	121
85	Hybrid immune-genetic algorithm method for benefit maximisation of distribution network operators and distributed generation owners in a deregulated environment. IET Generation, Transmission and Distribution, 2011, 5, 961.	2.5	82
86	Application of a Modified NSGA Method for Multi-Objective Static Distributed Generation Planning. Arabian Journal for Science and Engineering, 2011, 36, 809-825.	1.1	11
87	Efficient immune A method for DNOs in sizing and placement of distributed generation units. European Transactions on Electrical Power, 2011, 21, 1361-1375.	1.0	28
88	A practical eco-environmental distribution network planning model including fuel cells and non-renewable distributed energy resources. Renewable Energy, 2011, 36, 179-188.	8.9	112
89	A possibilistic–probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks—A case study. Renewable and Sustainable Energy Reviews, 2011, 15, 794-800.	16.4	95
90	A distribution network expansion planning model considering distributed generation options and techo-economical issues. Energy, 2010, 35, 3364-3374.	8.8	99

#	ARTICLE	IF	CITATIONS
91	Multi objective distributed generation planning using NSGA-II. , 2008, , .		11
92	The effects of enviromental parameters on wind turbine power PDF curve. Canadian Conference on Electrical and Computer Engineering, 2008, , .	0.0	5
93	Multi objective distributed generation planning in liberalized electricity markets. , 2008, , .		12