
Amalia Sertedaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4142597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Point Mutation in the KCNJ5 Gene Causing Primary Hyperaldosteronism and Early-Onset Autosomal Dominant Hypertension. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1532-E1539.	3.6	116
2	Stress-induced Aldosterone Hyper-Secretion in a Substantial Subset of Patients With Essential Hypertension. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2857-2864.	3.6	97
3	Pituitary Magnetic Resonance Imaging in 15 Patients with Prop1 Gene Mutations: Pituitary Enlargement May Originate from the Intermediate Lobe. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2200-2206.	3.6	87
4	A Novel Point Mutation of the Human Glucocorticoid Receptor Gene Causes Primary Generalized Glucocorticoid Resistance Through Impaired Interaction With the LXXLL Motif of the p160 Coactivators: Dissociation of the Transactivating and Transreppressive Activities. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E902-E907.	3.6	49
5	Increased glucocorticoid receptor expression in sepsis is related to heat shock proteins, cytokines, and cortisol and is associated with increased mortality. Intensive Care Medicine Experimental, 2017, 5, 10.	1.9	48
6	Pituitary Stalk Interruption Syndrome and Isolated Pituitary Hypoplasia May Be Caused by Mutations in Holoprosencephaly-Related Genes. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E779-E784.	3.6	46
7	A Novel Point Mutation in the DNA-Binding Domain (DBD) of the Human Glucocorticoid Receptor Causes Primary Generalized Glucocorticoid Resistance by Disrupting the Hydrophobic Structure of its DBD. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E790-E795.	3.6	34
8	A novel mutation of the <i><scp>hGR</scp></i> gene causing Chrousos syndrome. European Journal of Clinical Investigation, 2015, 45, 782-791.	3.4	33
9	Prolonged jaundice and hypothyroidism as the presenting symptoms in a neonate with a novel Prop1 gene mutation (Q83X). European Journal of Endocrinology, 2004, 150, 257-264.	3.7	30
10	Pituitary stalk interruption syndrome: cause, clinical manifestations, diagnosis, and management. Current Opinion in Pediatrics, 2016, 28, 545-550.	2.0	30
11	Low TSH Congenital Hypothyroidism: Identification of a Novel Mutation of the TSH ß-Subunit Gene in One Sporadic Case (C85R) and of Mutation Q49stop in Two Siblings with Congenital Hypothyroidism. Pediatric Research, 2002, 52, 935-940.	2.3	26
12	Conception and pregnancy outcome in a patient with 11-bp deletion of the steroidogenic acute regulatory protein gene. Fertility and Sterility, 2009, 91, 934.e15-934.e18.	1.0	24
13	Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. Pediatric Diabetes, 2020, 21, 28-39.	2.9	24
14	Recent advances in the molecular mechanisms causing primary generalized glucocorticoid resistance. Hormones, 2016, 15, 23-34.	1.9	23
15	Comparative functional analysis of two fibroblast growth factor receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in isolated hypogonadotropic hypogonadism (IHH). Gene, 2013, 516, 146-151.	2.2	19
16	Ovulation induction and successful pregnancy outcome in two patients with Prop1 gene mutations. Fertility and Sterility, 2004, 82, 454-457.	1.0	18
17	Functional characterization of the hGRαT556I causing Chrousos syndrome. European Journal of Clinical Investigation, 2016, 46, 42-49.	3.4	18
18	Functional characterization of two novel germline mutations of the <i><scp>KCNJ</scp>5</i> gene in hypertensive patients without primary aldosteronism but with <scp>ACTH</scp> â€dependent aldosteronism but with <scp>ACTH</scp> â€dependent aldosteronism but with <scp>ACTH</scp> â€dependent aldosterone hypersecretion. Clinical Endocrinology, 2016, 85, 845-851.	2.4	15

Amalia Sertedaki

#	Article	IF	CITATIONS
19	Recent advances in the molecular mechanisms causing primary generalized glucocorticoid resistance. Hormones, 2016, 15, 23-34.	1.9	15
20	The spectrum ofHNF1Agene mutations in Greek patients with MODY3: relative frequency and identification of seven novel germline mutations. Pediatric Diabetes, 2013, 14, 526-534.	2.9	12
21	Late diagnosis of 5alpha steroid-reductase deficiency due to IVS12A>G mutation of the SRD5a2 gene in an adolescent girl presented with primary amenorrhea. Hormones, 2011, 10, 230-235.	1.9	11
22	Transient generalized glucocorticoid hypersensitivity. European Journal of Clinical Investigation, 2015, 45, 1306-1315.	3.4	11
23	First Report of Diabetes Phenotype due to a Loss-of-Function <i> ABCC8</i> Mutation Previously Known to Cause Congenital Hyperinsulinism. Case Reports in Genetics, 2019, 2019, 1-5.	0.2	11
24	lncRNA <i>NORAD</i> is consistently detected in breastmilk exosomes and its expression is downregulated in mothers of preterm infants. International Journal of Molecular Medicine, 2021, 48, .	4.0	8
25	The Role of S-Palmitoylation of the Human Glucocorticoid Receptor (hGR) in Mediating the Nongenomic Glucocorticoid Actions. Journal of Molecular Biochemistry, 2017, 6, 3-12.	0.1	8
26	Sequencing analysis of the human glucocorticoid receptor (NR3C1) gene in multiple sclerosis patients. Journal of the Neurological Sciences, 2016, 363, 165-169.	0.6	7
27	Long-term clinical data and molecular defects in the STAR gene in five Greek patients. European Journal of Endocrinology, 2013, 168, 351-359.	3.7	6
28	Molecular Analysis of theCYP11B2Gene in 62 Patients with Hypoaldosteronism Due to Aldosterone Synthase Deficiency. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e182-e191.	3.6	6
29	Unravelling the Genetic Basis of Primary Aldosteronism. Nutrients, 2021, 13, 875.	4.1	6
30	A Favorable Metabolic and Antiatherogenic Profile in Carriers of <i>CYP21A2</i> Gene Mutations Supports the Theory of a Survival Advantage in This Population. Hormone Research in Paediatrics, 2009, 72, 337-343.	1.8	5
31	Transcriptomics in tissue glucocorticoid sensitivity. European Journal of Clinical Investigation, 2019, 49, e13129.	3.4	5
32	Untargeted Plasma Metabolomics Unravels a Metabolic Signature for Tissue Sensitivity to Glucocorticoids in Healthy Subjects: Its Implications in Dietary Planning for a Healthy Lifestyle. Nutrients, 2021, 13, 2120.	4.1	5
33	A case of digenic maturity onset diabetes of the young with heterozygous variants in both HNF1Α and HNF1Î' genes. European Journal of Medical Genetics, 2021, 64, 104264.	1.3	5
34	Adrenal Steroids in Female Hypothyroid Neonates: Unraveling an Association Between Thyroid Hormones and Adrenal Remodeling. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3996-4004.	3.6	4
35	Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency. Cells, 2022, 11, 2088.	4.1	4
36	Emerging technologies in pediatrics: the paradigm of neonatal diabetes mellitus. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 522-531.	6.1	3

#	Article	IF	CITATIONS
37	PROP-1 gene mutations in a 63-year-old woman presenting with osteoporosis and hyperlipidaemia. Hormones, 2013, 12, 128-134.	1.9	2
38	Detection of hepatocyte nuclear factor 4A(<i>HNF4A</i>) gene variant as the cause for congenital hyperinsulinism leads to revision of the diagnosis of the mother. Journal of Pediatric Endocrinology and Metabolism, 2021, 34, 527-530.	0.9	2
39	Aldosterone synthase deficiency type II: an unusual presentation of the first Greek case reported with confirmed genetic analysis. Endocrine Regulations, 2020, 54, 227-229.	1.3	2
40	Molecular Defects in the Hypothalamic-Pituitary-Thyroid Axis Leading to Congenital Hypothyroidism. Current Pediatric Reviews, 2005, 1, 225-233.	0.8	1
41	Plasma Proteomics in Healthy Subjects with Differences in Tissue Glucocorticoid Sensitivity Identifies A Novel Proteomic Signature. Biomedicines, 2022, 10, 184.	3.2	1
42	A human paradigm of LHX4 and NR5A1 developmental gene interaction in the pituitary gland and ovary?. European Journal of Human Genetics, 2022, , .	2.8	0