Berengere Dubrulle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140845/publications.pdf

Version: 2024-02-01

168 papers 5,189 citations

35 h-index 98798 67 g-index

175 all docs

175 docs citations

175 times ranked

2580 citing authors

#	Article	IF	CITATIONS
1	A correspondence between the multifractal model of turbulence and the Navier–Stokes equations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210092.	3.4	7
2	How many modes are needed to predict climate bifurcations? Lessons from an experiment. Nonlinear Processes in Geophysics, 2022, 29, 17-35.	1.3	5
3	Learning a Weather Dictionary of Atmospheric Patterns Using Latent Dirichlet Allocation. Geophysical Research Letters, 2022, 49, .	4.0	5
4	A Model of Interacting Navier–Stokes Singularities. Entropy, 2022, 24, 897.	2.2	0
5	Turbulence in realistic geometries with moving boundaries: When simulations meet experiments. Computers and Fluids, 2021, 214, 104750.	2.5	2
6	On the nature of intermittency in a turbulent von $K\tilde{A}_{l}$ rm \tilde{A}_{l} n flow. Journal of Fluid Mechanics, 2021, 914, .	3.4	12
7	Three-dimensional analysis of precursors to non-viscous dissipation in an experimental turbulent flow. Journal of Fluid Mechanics, 2021, 914, .	3.4	10
8	Experimental signature of quantum turbulence in velocity spectra?. New Journal of Physics, 2021, 23, 063005.	2.9	5
9	Small-scale Induced Large-scale Transitions in Solar Wind Magnetic Field. Astrophysical Journal Letters, 2021, 914, L6.	8.3	5
10	Investigation of properties of superfluid <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>He</mml:mi><mml:mpresc></mml:mpresc><mml:none></mml:none><mml:mn>4</mml:mn></mml:mmultiscripts></mml:math> turbulence using a hot-wire signal. Physical Review Fluids, 2021, 6, .	cripts 2.5	3
11	Optimization of regularized B-spline smoothing for turbulent Lagrangian trajectories. Experimental Thermal and Fluid Science, 2021, 127, 110376.	2.7	5
12	Weak formulation and scaling properties of energy fluxes in three-dimensional numerical turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2020, 885, .	3.4	9
13	A Maximum Entropy Production Hypothesis for Time Varying Climate Problems: Illustration on a Conceptual Model for the Seasonal Cycle. Entropy, 2020, 22, 966.	2.2	1
14	Sub-grid modelling for a diffusive lattice gas. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 405006.	2.1	0
15	Characterizing most irregular small-scale structures in turbulence using local Hölder exponents. Physical Review E, 2020, 102, 063105.	2.1	9
16	Transition from non-swirling to swirling axisymmetric turbulence. Physical Review Fluids, 2020, 5, .	2.5	5
17	Local estimates of Hölder exponents in turbulent vector fields. Physical Review E, 2019, 99, 053114.	2.1	8
18	A radiative-convective model based on constrained maximum entropy production. Earth System Dynamics, 2019, 10, 365-378.	7.1	3

#	Article	IF	CITATIONS
19	Phase transition in time-reversible Navier-Stokes equations. Physical Review E, 2019, 100, 043104.	2.1	12
20	Turbulence in disks and laboratory experiments: the contribution of Jean-Paul Zahn. EAS Publications Series, 2019, 82, 385-389.	0.3	0
21	Beyond Kolmogorov cascades. Journal of Fluid Mechanics, 2019, 867, .	3.4	91
22	About Universality and Thermodynamics of Turbulence. Entropy, 2019, 21, 326.	2.2	5
23	Computation and Characterization of Local Subfilter-Scale Energy Transfers in Atmospheric Flows. Journals of the Atmospheric Sciences, 2018, 75, 2175-2186.	1.7	11
24	On the universality of anomalous scaling exponents of structure functions in turbulentÂflows. Journal of Fluid Mechanics, 2018, 837, 657-669.	3.4	21
25	Dissipation, intermittency, and singularities in incompressible turbulent flows. Physical Review E, 2018, 97, 053101.	2.1	14
26	Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains. Journal of Statistical Physics, 2018, 170, 62-68.	1.2	4
27	Large-scale investigation of a turbulent bifurcation in the swirling Von Karman flow. Fluid Dynamics Research, 2018, 50, 065508.	1.3	1
28	Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow. Physical Review Fluids, $2018, 3, .$	2.5	19
29	A non-equilibrium Ising model of turbulence. Phase Transitions, 2017, 90, 1079-1088.	1.3	1
30	New method for detecting singularities in experimental incompressible flows. Nonlinearity, 2017, 30, 2381-2402.	1.4	9
31	Effects of turbulence, resistivity and boundary conditions on helicoidal flow collimation: Consequences for the Von-Kármán-Sodium dynamo experiment. Physics of Plasmas, 2017, 24, .	1.9	7
32	Stochastic Chaos in a Turbulent Swirling Flow. Physical Review Letters, 2017, 119, 014502.	7.8	47
33	Is Turbulence a State of Maximum Energy Dissipation?. Entropy, 2017, 19, 154.	2.2	10
34	Statistical-mechanical approach to study the hydrodynamic stability of the stably stratified atmospheric boundary layer. Physical Review Fluids, 2017, 2, .	2.5	8
35	Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow. Nature Communications, 2016, 7, 12466.	12.8	46
36	The switching between zonal and blocked mid-latitude atmospheric circulation: a dynamical system perspective. Climate Dynamics, 2016, 47, 1587-1599.	3.8	31

#	Article	IF	CITATIONS
37	Role of boundary conditions in helicoidal flow collimation: Consequences for the von KĀ¡rmán sodium dynamo experiment. Physical Review E, 2015, 92, 063015.	2.1	6
38	Wave-turbulence description of interacting particles: Klein-Gordon model with a Mexican-hat potential. Physical Review E, 2015, 92, 012909.	2.1	1
39	Cryogenic turbulence test facilities at CEA/SBT. IOP Conference Series: Materials Science and Engineering, 2015, 101, 012187.	0.6	0
40	Early warnings indicators of financial crises via auto regressive moving average models. Communications in Nonlinear Science and Numerical Simulation, 2015, 29, 233-239.	3.3	24
41	A statistical mechanics framework for the large-scale structure of turbulent von Kármán flows. New Journal of Physics, 2015, 17, 063006.	2.9	23
42	Global vs local energy dissipation: The energy cycle of the turbulent von Kármán flow. Physics of Fluids, 2015, 27, 075105.	4.0	19
43	Statistical optimization for passive scalar transport: maximum entropy production versus maximum Kolmogorov–Sinai entropy. Nonlinear Processes in Geophysics, 2015, 22, 187-196.	1.3	1
44	Statistical mechanics of the 3D axisymmetric Euler equations in a Taylor–Couette geometry. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P01005.	2.3	16
45	Probing turbulence intermittency via autoregressive moving-average models. Physical Review E, 2014, 90, 061001.	2.1	6
46	Probing quantum and classical turbulence analogy in von Kármán liquid helium, nitrogen, and water experiments. Physics of Fluids, 2014, 26, .	4.0	26
47	Robust estimate of dynamo thresholds in the von $K\tilde{A}_i$ rm \tilde{A}_i n sodium experiment using the extreme value theory. New Journal of Physics, 2014, 16, 083001.	2.9	5
48	Maximum Entropy Production vs. Kolmogorov-Sinai Entropy in a Constrained ASEP Model. Entropy, 2014, 16, 1037-1046.	2.2	10
49	Influence of Reynolds number and forcing type in a turbulent von Kármán flow. New Journal of Physics, 2014, 16, 063037.	2.9	6
50	Superfluid high REynolds von Kármán experiment. Review of Scientific Instruments, 2014, 85, 103908.	1.3	38
51	A zero-mode mechanism for spontaneous symmetry breaking in a turbulent von Kármán flow. New Journal of Physics, 2014, 16, 013055.	2.9	12
52	Dynamo efficiency controlled by hydrodynamic bistability. Physical Review E, 2014, 89, 063023.	2.1	2
53	Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes. Physics of Fluids, 2014, 26, 105101.	4.0	21
54	Publisher's Note: Dynamo efficiency controlled by hydrodynamic bistability [Phys. Rev. E89, 063023 (2014)]. Physical Review E, 2014, 90, .	2.1	1

#	Article	IF	CITATIONS
55	Eckhaus-like instability of large scale coherent structures in a fully turbulent von Kármán flow. Physics of Fluids, 2014, 26, 015103.	4.0	5
56	Cross-helicity in Rotating Homogeneous Shear-Stratified Turbulence. Physical Review Letters, 2014, 112, 114501.	7.8	7
57	Statistical early-warning indicators based on autoregressive moving-average models. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 252001.	2.1	8
58	Evidence for Forcing-Dependent Steady States in a Turbulent Swirling Flow. Physical Review Letters, 2013, 111, 234502.	7.8	25
59	Vertical Temperature Profiles at Maximum Entropy Production with a Net Exchange Radiative Formulation*. Journal of Climate, 2013, 26, 8545-8555.	3.2	5
60	Dynamo threshold detection in the von $K\tilde{A}_{i}$ rm \tilde{A}_{i} n sodium experiment. Physical Review E, 2013, 88, 013002.	2.1	29
61	Symmetry and couplings in stationary Von Kármán sodium dynamos. New Journal of Physics, 2012, 14, 013044.	2.9	18
62	Statistical mechanics of quasi-geostrophic flows on a rotating sphere. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P05023.	2.3	11
63	Experimental Observation of Spatially Localized Dynamo Magnetic Fields. Physical Review Letters, 2012, 108, 144501.	7.8	14
64	Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astronomy and Astrophysics, 2012, 547, A64.	5.1	48
65	Dual non-Kolmogorov cascades in a von Kármán flow. Europhysics Letters, 2012, 100, 44003.	2.0	22
66	Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere. Physical Review E, 2012, 85, 056304.	2.1	12
67	Kinematic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î±</mml:mi></mml:math> Tensors and Dynamo Mechanisms in a vonÂKármán Swirling Flow. Physical Review Letters, 2012, 109, 024503.	7.8	19
68	Susceptibility divergence, phase transition and multistability of a highly turbulent closed flow. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011, P07012.	2.3	17
69	A phase transition in a closed turbulent flow. Journal of Physics: Conference Series, 2011, 318, 032003.	0.4	0
70	LES-Langevin Approach for Turbulent Channel Flow. ERCOFTAC Series, 2011, , 239-248.	0.1	0
71	Statistical mechanics of Fofonoff flows in an oceanic basin. European Physical Journal B, 2011, 80, 493-517.	1.5	13
72	Present and Last Glacial Maximum climates as states of maximum entropy production. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1059-1069.	2.7	20

#	Article	IF	CITATIONS
73	Three-dimensional magnetic field reconstruction in the VKS experiment through Galerkin transforms. New Journal of Physics, 2011, 13, 023037.	2.9	7
74	Entropy production and multiple equilibria: the case of the ice-albedo feedback. Earth System Dynamics, 2011, 2, 13-23.	7.1	12
75	Turbulent dynamos. Proceedings of the International Astronomical Union, 2010, 6, 326-338.	0.0	0
76	Kinematic dynamo simulations of von Kármán flows: application to the VKS experiment. European Physical Journal B, 2010, 74, 165-176.	1.5	4
77	Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution. European Physical Journal B, 2010, 77, 167-186.	1.5	9
78	Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states. European Physical Journal B, 2010, 77, 187-212.	1.5	35
79	Dynamo regimes and transitions in the VKS experiment. European Physical Journal B, 2010, 77, 459-468.	1.5	70
80	Experimental Evidence of a Phase Transition in a Closed Turbulent Flow. Physical Review Letters, 2010, 105, 214501.	7.8	48
81	Turbulent velocity spectra in superfluid flows. Physics of Fluids, 2010, 22, .	4.0	90
82	Statistical mechanics of Beltrami flows in axisymmetric geometry: equilibria and bifurcations. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P06019.	2.3	16
83	Statistical mechanics of Beltrami flows in axisymmetric geometry: Theory reexamined. Physical Review E, 2010, 81, 066318.	2.1	32
84	Normalized kinetic energy as a hydrodynamical global quantity for inhomogeneous anisotropic turbulence. Physics of Fluids, 2009, 21, .	4.0	35
85	Relevance of visco-plastic theory in a multi-directional inhomogeneous granular flow. Europhysics Letters, 2009, 88, 14001.	2.0	29
86	The von Kármán Sodium experiment: Turbulent dynamical dynamos. Physics of Fluids, 2009, 21, .	4.0	89
87	Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium. Journal of Fluid Mechanics, 2009, 641, 217-226.	3.4	25
88	Euler-like modelling of dense granular flows: application to a rotating drum. European Physical Journal B, 2009, 68, 619-627.	1.5	16
89	Experimental study of the von $K\tilde{A}_i$ rm \tilde{A}_i n flow from Re = 102 to 106: spontaneous symmetry breaking and turbulent bifurcations. Springer Proceedings in Physics, 2009, , 59-62.	0.2	0
90	TSF Experiment for comparision of high Reynold's number turbulence in He I and He II : first results Springer Proceedings in Physics, 2009, , 701-704.	0.2	3

#	Article	IF	CITATIONS
91	The VKS experiment: turbulent dynamical dynamos. Comptes Rendus Physique, 2008, 9, .	0.9	12
92	Linear and non-linear features of the Taylor–Green dynamo. Comptes Rendus Physique, 2008, 9, 749-756.	0.9	8
93	Slow decay of concentration variance due to no-slip walls in chaotic mixing. Physical Review E, 2008, 78, 026211.	2.1	37
94	Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium. Physical Review Letters, 2008, 101, 074502.	7.8	67
95	Fluctuation-Dissipation Relations and Statistical Temperatures in a Turbulent von Kármán Flow. Physical Review Letters, 2008, 101, 174502.	7.8	24
96	TSF EXPERIMENT FOR COMPARISON OF HIGH REYNOLDS NUMBER TURBULENCE IN BOTH HE I AND HE II: FIRST RESULTS. AIP Conference Proceedings, 2008, , .	0.4	3
97	Course 5 Turbulence and dynamo. Les Houches Summer School Proceedings, 2008, , 301-358.	0.2	0
98	Magnetic field reversals in an experimental turbulent dynamo. Europhysics Letters, 2007, 77, 59001.	2.0	209
99	Subcritical Dynamo Bifurcation in the Taylor-Green Flow. Physical Review Letters, 2007, 99, 224501.	7.8	34
100	Bifurcations and dynamo action in a Taylor–Green flow. New Journal of Physics, 2007, 9, 308-308.	2.9	24
101	Walls Inhibit Chaotic Mixing. Physical Review Letters, 2007, 99, 114501.	7.8	54
102	Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium. Physical Review Letters, 2007, 98, 044502.	7.8	364
103	Stationary states, Fluctuation-Dissipation Theorem and effective temperature in a turbulent von Karman flow., 2007,, 286-288.		0
104	The Taylor-Couette Flow: The Hydrodynamic Twin of Rayleigh-BÃ@nard Convection. Springer Tracts in Modern Physics, 2006, , 225-242.	0.1	1
105	A LES-Langevin model for turbulence. European Physical Journal B, 2006, 49, 471-481.	1.5	5
106	Statistical mechanics of the shallow-water system with an a priori potential vorticity distribution. Comptes Rendus Physique, 2006, 7, 422-432.	0.9	4
107	Influence of Turbulence on the Dynamo Threshold. Physical Review Letters, 2006, 96, 204503.	7.8	54
108	Dynamics and thermodynamics of axisymmetric flows: Theory. Physical Review E, 2006, 73, 046308.	2.1	34

#	Article	IF	CITATIONS
109	Properties of Steady States in Turbulent Axisymmetric Flows. Physical Review Letters, 2006, 96, 124502.	7.8	56
110	A hydrodynamic shear instability in stratified disks. Astronomy and Astrophysics, 2005, 429, 1-13.	5.1	105
111	Turbulence in circumstellar disks. Astronomy and Astrophysics, 2005, 429, 531-542.	5.1	22
112	The turbulent dynamo as an instability in a noisy medium. European Physical Journal B, 2005, 44, 395-400.	1.5	17
113	Langevin Models of Turbulence., 2005,, 77-86.		0
114	Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Physics of Fluids, 2005, 17, 095103.	4.0	131
115	Thermodynamics of magnetohydrodynamic flows with axial symmetry. Physical Review E, 2005, 71, 036311.	2.1	10
116	Horizontally Oriented Plates in Clouds. Journals of the Atmospheric Sciences, 2004, 61, 2888-2898.	1.7	82
117	A stochastic model of torques in von Karman swirling flow. European Physical Journal B, 2004, 39, 121-129.	1.5	7
118	Fast numerical simulations of 2D turbulence using a dynamic model for subfilter motions. Journal of Computational Physics, 2004, 196, 184-207.	3.8	14
119	A model for rapid stochastic distortions of small-scale turbulence. Journal of Fluid Mechanics, 2004, 520, 1-21.	3.4	17
120	Forced stratified turbulence: Successive transitions with Reynolds number. Physical Review E, 2003, 68, 036308.	2.1	56
121	Langevin models of turbulence: Renormalization group, distant interaction algorithms or rapid distortion theory?. Physics of Fluids, 2003, 15, 1327-1339.	4.0	26
122	A New Dynamical Subgrid Model for the Planetary Surface Layer. Part II: Analytical Computation of Fluxes, Mean Profiles, and Variances. Journals of the Atmospheric Sciences, 2002, 59, 877-891.	1.7	6
123	A New Dynamical Subgrid Model for the Planetary Surface Layer. Part I: The Model and A Priori Tests. Journals of the Atmospheric Sciences, 2002, 59, 861-876.	1.7	16
124	Scaling in large Prandtl number turbulent thermal convection. European Physical Journal B, 2002, 28, 361-367.	1.5	15
125	Momentum transport and torque scaling in Taylor-Couette flow from an analogy with turbulent convection. European Physical Journal B, 2002, 26, 379-386.	1.5	41
126	Title is missing!. European Physical Journal B, 2002, 26, 379-386.	1.5	14

#	Article	IF	Citations
127	Logarithmic corrections to scaling in turbulent thermal convection. Clinical Research in Cardiology, 2001, 21, 295-304.	1.1	5
128	Nonlocality and intermittency in three-dimensional turbulence. Physics of Fluids, 2001, 13, 1995-2012.	4.0	89
129	A dynamic subfilter-scale model for plane parallel flows. Physics of Fluids, 2001, 13, 2045-2064.	4.0	17
130	Scaling laws and vortex profiles in two-dimensional decaying turbulence. Physical Review E, 2001, 63, 065301.	2.1	8
131	Turbulent transport and equilibrium profiles in two-dimensional magnetohydrodynamics with background shear. Physics of Plasmas, 2001, 8, 813-824.	1.9	29
132	A Dynamical Model for Turbulence. Fluid Mechanics and Its Applications, 2001, , 255-260.	0.2	1
133	Dynamical modeling of sub-grid scales in 2D turbulence. Physica D: Nonlinear Phenomena, 2000, 142, 231-253.	2.8	20
134	Nonlinear RDT theory of near-wall turbulence. Physica D: Nonlinear Phenomena, 2000, 139, 158-176.	2.8	39
135	Affine turbulence. European Physical Journal B, 2000, 13, 1-4.	1.5	7
136	Finite size scale invariance. European Physical Journal B, 2000, 14, 757-771.	1.5	11
137	Scaling laws prediction from a solvable model of turbulent thermal convection. Europhysics Letters, 2000, 51, 513-519.	2.0	5
138	Nonlocality of Interaction of Scales in the Dynamics of 2D Incompressible Fluids. Physical Review Letters, 1999, 83, 4061-4064.	7.8	25
139	Structure and Transport in the Solar Nebula from Constraints on Deuterium Enrichment and Giant Planets Formation. Icarus, 1999, 140, 129-155.	2.5	153
140	WKB theory for rapid distortion of inhomogeneous turbulence. Journal of Fluid Mechanics, 1999, 390, 325-348.	3.4	39
141	Truncated Lévy laws and 2D turbulence. European Physical Journal B, 1998, 4, 143-146.	1.5	24
142	Towards an universal classification of scale invariant processes. European Physical Journal B, 1998, 4, 89-94.	1.5	3
143	Thermodynamical versus log-Poisson distribution in turbulence. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 245, 419-424.	2.1	10
144	Analogy between scale symmetry and relativistic mechanics. I. Lagrangian formalism. Physical Review E, 1997, 56, 6427-6434.	2.1	3

#	Article	IF	CITATIONS
145	Analogy between scale symmetry and relativistic mechanics. II. Electric analog of turbulence. Physical Review E, 1997, 56, 6435-6442.	2.1	6
146	Interaction of turbulence and large-scale vortices in incompressible 2D fluids. Physica D: Nonlinear Phenomena, 1997, 110, 123-138.	2.8	38
147	Statistical Scale Symmetry Breaking. , 1997, , 275-286.		2
148	About Generalized Scaling for Passive Scalars in Fully Developed Turbulence. Journal De Physique II, 1997, 7, 793-800.	0.9	3
149	Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhysics Letters, 1996, 34, 411-416.	2.0	213
150	Forming Planetesimals in Vortices. Icarus, 1996, 121, 158-170.	2.5	161
151	Anomalous Scaling and Generic Structure Function in Turbulence. Journal De Physique II, 1996, 6, 1825-1840.	0.9	18
152	Possible Statistics of Scale Invariant Systems. Journal De Physique II, 1996, 6, 797-816.	0.9	18
153	Scale Invariance and Scaling Exponents in Fully Developed Turbulence. Journal De Physique II, 1996, 6, 817-824.	0.9	7
154	The Dust Subdisk in the Protoplanetary Nebula. Icarus, 1995, 114, 237-246.	2.5	461
155	Coagulation and settling of dust in a turbulent protoplanetary disk. Astrophysics and Space Science, 1995, 224, 567-568.	1.4	6
156	Scaling properties of a class of shell models. Physical Review E, 1995, 51, 5582-5593.	2.1	29
157	Scaling properties of numerical two-dimensional turbulence. Physical Review E, 1995, 52, 3719-3729.	2.1	39
158	Scaling laws of two-dimensional turbulence. , 1995, , 145-151.		0
159	On Scaling Laws for the Transition to Turbulence in Uniform-Shear Flows. Europhysics Letters, 1994, 27, 129-134.	2.0	18
160	Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Physical Review Letters, 1994, 73, 959-962.	7.8	342
161	Differential Rotation as a Source of Angular Momentum Transfer in the Solar Nebula. Icarus, 1993, 106, 59-76.	2.5	113
162	Non linear stability of slender accretion disks by bifurcation method. Geophysical and Astrophysical Fluid Dynamics, 1993, 70, 235-251.	1.2	1

#	Article	IF	CITATIONS
163	Nonlinear instability of viscous plane Couette flow Part 1. Analytical approach to a necessary condition. Journal of Fluid Mechanics, 1991, 231, 561-573.	3.4	23
164	Low-viscosity lattice gases. Physica D: Nonlinear Phenomena, 1991, 47, 27-29.	2.8	5
165	Eddy viscosity of parity-invariant flow. Physical Review A, 1991, 43, 5355-5364.	2.5	108
166	Non-linear stability of plane Couette flow. Lecture Notes in Physics, 1991, , 252-261.	0.7	1
167	Low-viscosity lattice gases. Journal of Statistical Physics, 1990, 59, 1187-1226.	1.2	36
168	Dynamical collapse of the W51 star-forming region. Astrophysical Journal, 1990, 363, 528.	4.5	39