Henk J Busscher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140762/publications.pdf

Version: 2024-02-01

567 papers 33,653 citations

90 h-index 146

573 all docs

573 docs citations

573 times ranked

26615 citing authors

g-index

#	Article	IF	CITATIONS
1	Water in bacterial biofilms: pores and channels, storage and transport functions. Critical Reviews in Microbiology, 2022, 48, 283-302.	2.7	38
2	Self-targeting of zwitterion-based platforms for nano-antimicrobials and nanocarriers. Journal of Materials Chemistry B, 2022, 10, 2316-2322.	2.9	6
3	A Guanosineâ€Quadruplex Hydrogel as Cascade Reaction Container Consuming Endogenous Glucose for Infected Wound Treatmentâ€"A Study in Diabetic Mice. Advanced Science, 2022, 9, e2103485.	5.6	45
4	In-biofilm generation of nitric oxide using a magnetically-targetable cascade-reaction container for eradication of infectious biofilms. Bioactive Materials, 2022, 14, 321-334.	8.6	13
5	Activation of a passive, mesoporous silica nanoparticle layer through attachment of bacterially-derived carbon-quantum-dots for protection and functional enhancement of probiotics. Materials Today Bio, 2022, 15, 100293.	2.6	7
6	A self-cleaning surface based on UV-activatable, AgCl micropumps for bacterial killing and removal. Chemical Communications, 2022, 58, 7030-7033.	2.2	2
7	A Comparison of the Adaptive Response of Staphylococcus aureus vs. Streptococcus mutans and the Development of Chlorhexidine Resistance. Frontiers in Microbiology, 2022, 13, .	1.5	4
8	Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms. Journal of Materials Science and Technology, 2021, 69, 69-78.	5.6	19
9	Thermo-resistance of ESKAPE-panel pathogens, eradication and growth prevention of an infectious biofilm by photothermal, polydopamine-nanoparticles in vitro. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102324.	1.7	7
10	Interfacial interactions between protective, surface-engineered shells and encapsulated bacteria with different cell surface composition. Nanoscale, 2021, 13, 7220-7233.	2.8	7
11	Clearance of ESKAPE Pathogens from Blood Using Bacterially Activated Macrophage Membrane oated Silicon Nanowires. Advanced Functional Materials, 2021, 31, 2007613.	7.8	9
12	Influence of interaction between surface-modified magnetic nanoparticles with infectious biofilm components in artificial channel digging and biofilm eradication by antibiotics <i>in vitro</i> and <i>in vivo</i> . Nanoscale, 2021, 13, 4644-4653.	2.8	16
13	PAMAM dendrimers with dual-conjugated vancomycin and Ag-nanoparticles do not induce bacterial resistance and kill vancomycin-resistant Staphylococci. Acta Biomaterialia, 2021, 123, 230-243.	4.1	28
14	<i>Escherichia coli</i> Colonization of Intestinal Epithelial Layers <i>In Vitro</i> in the Presence of Encapsulated <i>Bifidobacterium breve</i> for Its Protection against Gastrointestinal Fluids and Antibiotics. ACS Applied Materials & Amp; Interfaces, 2021, 13, 15973-15982.	4.0	22
15	X-Ray Photoelectron Spectroscopy on Microbial Cell Surfaces: A Forgotten Method for the Characterization of Microorganisms Encapsulated With Surface-Engineered Shells. Frontiers in Chemistry, 2021, 9, 666159.	1.8	11
16	Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization. Materials Science and Engineering C, 2021, 123, 112021.	3.8	18
17	Carbon Quantum Dots Derived from Different Carbon Sources for Antibacterial Applications. Antibiotics, 2021, 10, 623.	1.5	48
18	Liposomes with Water as a pHâ€Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angewandte Chemie, 2021, 133, 17855-17860.	1.6	10

#	Article	IF	CITATIONS
19	Liposomes with Water as a pHâ€Responsive Functionality for Targeting of Acidic Tumor and Infection Sites. Angewandte Chemie - International Edition, 2021, 60, 17714-17719.	7.2	26
20	Recent advances and future challenges in the use of nanoparticles for the dispersal of infectious biofilms. Journal of Materials Science and Technology, 2021, 84, 208-218.	5.6	12
21	Synergy between "Probiotic―Carbon Quantum Dots and Ciprofloxacin in Eradicating Infectious Biofilms and Their Biosafety in Mice. Pharmaceutics, 2021, 13, 1809.	2.0	2
22	On-demand pulling-off of magnetic nanoparticles from biomaterial surfaces through implant-associated infectious biofilms for enhanced antibiotic efficacy. Materials Science and Engineering C, 2021, 131, 112526.	3.8	7
23	Encapsulation of Photothermal Nanoparticles in Stealth and pH-Responsive Micelles for Eradication of Infectious Biofilms In Vitro and In Vivo. Nanomaterials, 2021, 11, 3180.	1.9	6
24	Accepting higher morbidity in exchange for sacrificing fewer animals in studies developing novel infection-control strategies. Biomaterials, 2020, 232, 119737.	5.7	16
25	Homogeneous Distribution of Magnetic, Antimicrobial-Carrying Nanoparticles through an Infectious Biofilm Enhances Biofilm-Killing Efficacy. ACS Biomaterials Science and Engineering, 2020, 6, 205-212.	2.6	31
26	Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges. Frontiers in Microbiology, 2020, 11, 599555.	1.5	15
27	Self-targeting, zwitterionic micellar dispersants enhance antibiotic killing of infectious biofilms—An intravital imaging study in mice. Science Advances, 2020, 6, eabb1112.	4.7	73
28	Visualization of Bacterial Colonization and Cellular Layers in a Gut-on-a-Chip System Using Optical Coherence Tomography. Microscopy and Microanalysis, 2020, 26, 1211-1219.	0.2	11
29	Role of adhesion forces in mechanosensitive channel gating in Staphylococcus aureus adhering to surfaces. Npj Biofilms and Microbiomes, 2020, 6, 31.	2.9	13
30	Coating of a Novel Antimicrobial Nanoparticle with a Macrophage Membrane for the Selective Entry into Infected Macrophages and Killing of Intracellular Staphylococci. Advanced Functional Materials, 2020, 30, 2004942.	7.8	59
31	Enhanced bacterial killing by vancomycin in staphylococcal biofilms disrupted by novel, DMMA-modified carbon dots depends on EPS production. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111114.	2.5	13
32	Antifungalâ€Inbuilt Metal–Organicâ€Frameworks Eradicate <i>Candida albicans</i> Biofilms. Advanced Functional Materials, 2020, 30, 2000537.	7.8	44
33	Circumventing antimicrobial-resistance and preventing its development in novel, bacterial infection-control strategies. Expert Opinion on Drug Delivery, 2020, 17, 1151-1164.	2.4	34
34	Eradicating Infecting Bacteria while Maintaining Tissue Integration on Photothermal Nanoparticle-Coated Titanium Surfaces. ACS Applied Materials & Samp; Interfaces, 2020, 12, 34610-34619.	4.0	22
35	Streptococcus mutans adhesion force sensing in multi-species oral biofilms. Npj Biofilms and Microbiomes, 2020, 6, 25.	2.9	29
36	Polarization of Macrophages, Cellular Adhesion, and Spreading on Bacterially Contaminated Gold Nanoparticle-Coatings <i>in Vitro</i> ACS Biomaterials Science and Engineering, 2020, 6, 933-945.	2.6	8

#	Article	IF	Citations
37	Perspectives on and Need to Develop New Infection Control Strategies. , 2020, , 95-105.		3
38	Artificial Channels in an Infectious Biofilm Created by Magnetic Nanoparticles Enhanced Bacterial Killing by Antibiotics. Small, 2019, 15, e1902313.	5.2	70
39	Keratinocytes protect soft-tissue integration of dental implant materials against bacterial challenges in a 3D-tissue infection model. Acta Biomaterialia, 2019, 96, 237-246.	4.1	21
40	Bacterial Density and Biofilm Structure Determined by Optical Coherence Tomography. Scientific Reports, 2019, 9, 9794.	1.6	43
41	Clinical translation of the assets of biomedical engineering $\hat{a} \in \text{``aretrospective analysis with looks to}$ the future. Expert Review of Medical Devices, 2019, 16, 913-922.	1.4	9
42	Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers. MBio, 2019, 10 , .	1.8	35
43	Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 2019, 48, 428-446.	18.7	464
44	Preparation and Evaluation of Antimicrobial Hyperbranched Emulsifiers for Waterborne Coatings. Langmuir, 2019, 35, 5779-5786.	1.6	16
45	Recommendations for design and conduct of preclinical in vivo studies of orthopedic deviceâ€related infection. Journal of Orthopaedic Research, 2019, 37, 271-287.	1.2	38
46	Penetration and Accumulation of Dendrons with Different Peripheral Composition in <i>Pseudomonas aeruginosa</i> Biofilms. Nano Letters, 2019, 19, 4327-4333.	4.5	15
47	Phosphorylcholine-Based Polymer Encapsulated Chitosan Nanoparticles Enhance the Penetration of Antimicrobials in a Staphylococcal Biofilm. ACS Macro Letters, 2019, 8, 651-657.	2.3	46
48	Biofilm composition and composite degradation during intra-oral wear. Dental Materials, 2019, 35, 740-750.	1.6	44
49	Role of Viscoelasticity in Bacterial Killing by Antimicrobials in Differently Grown <i>Pseudomonas aeruginosa</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	20
50	Click Reaction for Reversible Encapsulation of Single Yeast Cells. ACS Nano, 2019, 13, 14459-14467.	7.3	41
51	Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo. Journal of Controlled Release, 2019, 293, 73-83.	4.8	33
52	Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings. Biomacromolecules, 2019, 20, 243-253.	2.6	55
53	A Trans-Atlantic Perspective on Stagnation in Clinical Translation of Antimicrobial Strategies for the Control of Biomaterial-Implant-Associated Infection. ACS Biomaterials Science and Engineering, 2019, 5, 402-406.	2.6	29
54	Applications and Perspectives of Cascade Reactions in Bacterial Infection Control. Frontiers in Chemistry, 2019, 7, 861.	1.8	16

#	Article	IF	Citations
55	Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Frontiers in Chemistry, 2019, 7, 872.	1.8	104
56	bFGF and Polyâ€RGD Cooperatively Establish Biointerface for Stem Cell Adhesion, Proliferation, and Differentiation. Advanced Materials Interfaces, 2018, 5, 1700702.	1.9	12
57	Floating and Tether-Coupled Adhesion of Bacteria to Hydrophobic and Hydrophilic Surfaces. Langmuir, 2018, 34, 4937-4944.	1.6	27
58	In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomaterialia, 2018, 70, 12-24.	4.1	97
59	Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiology Reviews, 2018, 42, 259-272.	3.9	66
60	A bilayered nanoshell for durable protection of single yeast cells against multiple, simultaneous hostile stimuli. Chemical Science, 2018, 9, 4730-4735.	3.7	23
61	Photoswitchable Micelles for the Control of Singlet-Oxygen Generation in Photodynamic Therapies. Biomacromolecules, 2018, 19, 2023-2033.	2.6	25
62	Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 2018, 84, .	1.4	51
63	Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses. Journal of Colloid and Interface Science, 2018, 512, 14-20.	5.0	17
64	Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Advances in Colloid and Interface Science, 2018, 261, 1-14.	7.0	245
65	Bacterial interactions with nanostructured surfaces. Current Opinion in Colloid and Interface Science, 2018, 38, 170-189.	3.4	77
66	Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomaterialia, 2018, 79, 331-343.	4.1	82
67	Surface enhanced fluorescence and nanoscopic cell wall deformation in adhering <i>Staphylococcus aureus </i> i>upon exposure to cell wall active and non-active antibiotics. Nanoscale, 2018, 10, 11123-11133.	2.8	12
68	Transmission of Monospecies and Dual-Species Biofilms from Smooth to Nanopillared Surfaces. Applied and Environmental Microbiology, 2018, 84, .	1.4	5
69	Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity. ACS Applied Materials & Distribution (2017), 9, 12118-12129.	4.0	182
70	Eradication of Multidrugâ€Resistant <i>Staphylococcal</i> Infections by Lightâ€Activatable Micellar Nanocarriers in a Murine Model. Advanced Functional Materials, 2017, 27, 1701974.	7.8	111
71	Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin–Voigt and Maxwell models. Physical Chemistry Chemical Physics, 2017, 19, 25391-25400.	1.3	11
72	Selfâ€perceived mouthfeel and physicoâ€chemical surface effects after chewing gums containing sorbitol and Magnolia bark extract. European Journal of Oral Sciences, 2017, 125, 379-384.	0.7	4

#	Article	IF	CITATIONS
73	Structural changes in <i>S. epidermidis</i> biofilms after transmission between stainless steel surfaces. Biofouling, 2017, 33, 712-721.	0.8	11
74	Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomaterialia, 2017, 61, 66-74.	4.1	106
75	Influence of biofilm lubricity on shearâ€induced transmission of staphylococcal biofilms from stainless steel to silicone rubber. Microbial Biotechnology, 2017, 10, 1744-1752.	2.0	7
76	Physico-chemistry of bacterial transmission versus adhesion. Advances in Colloid and Interface Science, 2017, 250, 15-24.	7.0	37
77	Comparison of methods to evaluate bacterial contact-killing materials. Acta Biomaterialia, 2017, 59, 139-147.	4.1	67
78	Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. Scientific Reports, 2017, 7, 4369.	1.6	35
79	A Trifunctional, Modular Biomaterial Coating: Nonadhesive to Bacteria, Chlorhexidineâ€Releasing and Tissueâ€Integrating. Macromolecular Bioscience, 2017, 17, 1600336.	2.1	9
80	Transcriptional Profiling of C. albicans in a Two Species Biofilm with Rothia dentocariosa. Frontiers in Cellular and Infection Microbiology, 2017, 7, 311.	1.8	12
81	Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion. Cellular Microbiology, 2016, 18, 605-614.	1.1	7
82	Poly(trimethylene carbonate) as a carrier for rifampicin and vancomycin to target therapyâ€recalcitrant staphylococcal biofilms. Journal of Orthopaedic Research, 2016, 34, 1828-1837.	1.2	16
83	Magnolia bark extract increases oral bacterial cell surface hydrophobicity and improves self-perceived breath freshness when added to chewing gum. Journal of Functional Foods, 2016, 25, 367-374.	1.6	4
84	Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response. Pathogens and Disease, 2016, 74, ftw029.	0.8	8
85	Quantification of the viscoelasticity of the bond of biotic and abiotic particles adhering to solid-liquid interfaces using a window-equipped quartz crystal microbalance with dissipation. Colloids and Surfaces B: Biointerfaces, 2016, 148, 255-262.	2.5	6
86	Structured free-water clusters near lubricating surfaces are essential in water-based lubrication. Journal of the Royal Society Interface, 2016, 13, 20160554.	1.5	3
87	Staphylococcal Adhesion, Detachment and Transmission on Nanopillared Si Surfaces. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30430-30439.	4.0	57
88	Potential benefits of chewing gum for the delivery of oral therapeutics and its possible role in oral healthcare. Expert Opinion on Drug Delivery, 2016, 13, 1421-1431.	2.4	30
89	Surface-Adaptive, Antimicrobially Loaded, Micellar Nanocarriers with Enhanced Penetration and Killing Efficiency in Staphylococcal Biofilms. ACS Nano, 2016, 10, 4779-4789.	7.3	293
90	Antimicrobials Influence Bond Stiffness and Detachment of Oral Bacteria. Journal of Dental Research, 2016, 95, 793-799.	2.5	11

#	Article	IF	CITATIONS
91	Mechanism of cell integration on biomaterial implant surfaces in the presence of bacterial contamination. Journal of Biomedical Materials Research - Part A, 2015, 103, 3590-3598.	2.1	24
92	3Dâ€Printable Antimicrobial Composite Resins. Advanced Functional Materials, 2015, 25, 6756-6767.	7.8	105
93	Quantification and Qualification of Bacteria Trapped in Chewed Gum. PLoS ONE, 2015, 10, e0117191.	1.1	14
94	Chemical Signals and Mechanosensing in Bacterial Responses to Their Environment. PLoS Pathogens, 2015, 11, e1005057.	2.1	49
95	Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro. International Journal of Oral Science, 2015, 7, 250-258.	3.6	32
96	Influence of Adhesion Force on <i>icaA</i> and <i>cidA</i> Gene Expression and Production of Matrix Components in Staphylococcus aureus Biofilms. Applied and Environmental Microbiology, 2015, 81, 3369-3378.	1.4	54
97	Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials. Acta Biomaterialia, 2015, 18, 1-8.	4.1	24
98	Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiology Reviews, 2015, 39, 234-245.	3.9	237
99	Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus. International Journal of Antimicrobial Agents, 2015, 46, 713-717.	1.1	12
100	In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens. International Journal of Oral Science, 2015, 7, 42-48.	3.6	18
101	Synergy of brushing mode and antibacterial use on in vivo biofilm formation. Journal of Dentistry, 2015, 43, 1580-1586.	1.7	19
102	Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. ACS Applied Materials & Self-Defensive Antibiotic Coating Account Accou	4.0	125
103	Contribution of Adsorbed Protein Films to Nanoscopic Vibrations Exhibited by Bacteria Adhering through Ligand–Receptor Bonds. Langmuir, 2015, 31, 10443-10450.	1.6	3
104	Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation. Applied Surface Science, 2015, 356, 325-332.	3.1	17
105	Current Developments in Antimicrobial Surface Coatings for Biomedical Applications. Current Medicinal Chemistry, 2015, 22, 2116-2129.	1.2	123
106	Antimicrobial penetration in a dual-species oral biofilm after noncontact brushing: an in vitro study. Clinical Oral Investigations, 2014, 18, 1103-1109.	1.4	15
107	Voice Prosthetic Biofilm Formation and Candida Morphogenic Conversions in Absence and Presence of Different Bacterial Strains and Species on Silicone-Rubber. PLoS ONE, 2014, 9, e104508.	1.1	18
108	A Shapeâ€Adaptive, Antibacterialâ€Coating of Immobilized Quaternaryâ€Ammonium Compounds Tethered on Hyperbranched Polyurea and its Mechanism of Action. Advanced Functional Materials, 2014, 24, 346-355.	7.8	271

#	Article	IF	Citations
109	Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. Biomaterials, 2014, 35, 2580-2587.	5.7	43
110	Nanoscale Cell Wall Deformation Impacts Long-Range Bacterial Adhesion Forces on Surfaces. Applied and Environmental Microbiology, 2014, 80, 637-643.	1.4	69
111	Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymerâ€Brush Functionalized Surfaces Under Fluid Flow. Advanced Functional Materials, 2014, 24, 4435-4441.	7.8	23
112	Small-molecule-hosting nanocomposite films with multiple bacteria-triggered responses. NPG Asia Materials, 2014, 6, e121-e121.	3.8	48
113	Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. Soft Matter, 2014, 10, 7638-7646.	1.2	29
114	Characterization and Activity of an Immobilized Antimicrobial Peptide Containing Bactericidal PEG-Hydrogel. Biomacromolecules, 2014, 15, 3390-3395.	2.6	57
115	Nanoscopic Vibrations of Bacteria with Different Cell-Wall Properties Adhering to Surfaces under Flow and Static Conditions. ACS Nano, 2014, 8, 8457-8467.	7. 3	25
116	Viscous Nature of the Bond between Adhering Bacteria and Substratum Surfaces Probed by Atomic Force Microscopy. Langmuir, 2014, 30, 3165-3169.	1.6	10
117	Orthodontic treatment with fixed appliances and biofilm formation—a potential public health threat?. Clinical Oral Investigations, 2014, 18, 1711-1718.	1.4	117
118	Conditions of lateral surface confinement that promote tissue-cell integration and inhibit biofilm growth. Biomaterials, 2014, 35, 5446-5452.	5.7	34
119	Soft tissue integration versus early biofilm formation on different dental implant materials. Dental Materials, 2014, 30, 716-727.	1.6	147
120	On-demand antimicrobial release from a temperature-sensitive polymer â€" Comparison with ad libitum release from central venous catheters. Journal of Controlled Release, 2014, 188, 61-66.	4.8	11
121	Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules, 2014, 15, 2019-2026.	2.6	112
122	An <i>in vitro</i> investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	17
123	Visualization of Microbiological Processes Underlying Stress Relaxation in <i>Pseudomonas aeruginosa</i> Biofilms. Microscopy and Microanalysis, 2014, 20, 912-915.	0.2	13
124	Staphylococcal Colonization of E-Beam Patterned Surfaces. Microscopy and Microanalysis, 2014, 20, 1184-1185.	0.2	0
125	Characterization of novel silane coatings on titanium implant surfaces. Clinical Oral Implants Research, 2013, 24, 688-697.	1.9	51
126	Infection resistance of degradable versus non-degradable biomaterials: An assessment of the potential mechanisms. Biomaterials, 2013, 34, 8013-8017.	5.7	77

#	Article	IF	CITATIONS
127	Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opinion on Drug Delivery, 2013, 10, 341-351.	2.4	138
128	Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials. Clinical Oral Investigations, 2013, 17, 1209-1218.	1.4	16
129	Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae—An AFM study. Colloids and Surfaces B: Biointerfaces, 2013, 110, 45-50.	2.5	14
130	Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials, 2013, 34, 9237-9243.	5.7	93
131	Surface enhanced bacterial fluorescence and enumeration of bacterial adhesion. Biofouling, 2013, 29, 11-19.	0.8	13
132	Nonadhesive, silica nanoparticlesâ€based brushâ€coated contact lens cases—Compromising between ease of cleaning and microbial transmission to contact lenses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 640-647.	1.6	17
133	Bridging the Gap Between In Vitro and In Vivo Evaluation of Biomaterial-Associated Infections. , 2013, , 107-117.		3
134	A Functional DNase I Coating to Prevent Adhesion of Bacteria and the Formation of Biofilm. Advanced Functional Materials, 2013, 23, 2843-2849.	7.8	165
135	Surface Thermodynamic and Adhesion Force Evaluation of the Role of Chitin-Binding Protein in the Physical Interaction between <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i> Langmuir, 2013, 29, 4823-4829.	1.6	25
136	Simulating Anti-adhesive and Antibacterial Bifunctional Polymers for Surface Coating using BioScape. , 2013, , .		3
137	A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilms. MBio, 2013, 4, e00497-13.	1.8	91
138	Recombinant Supercharged Polypeptides Restore and Improve Biolubrication. Advanced Materials, 2013, 25, 3426-3431.	11.1	28
139	Bacterial Adhesion Forces to Ag-Impregnated Contact Lens Cases and Transmission to Contact Lenses. Cornea, 2013, 32, 326-331.	0.9	6
140	Stress Relaxation Analysis Facilitates a Quantitative Approach towards Antimicrobial Penetration into Biofilms. PLoS ONE, 2013, 8, e63750.	1.1	42
141	Phagocytosis of Bacteria Adhering to a Biomaterial Surface in a Surface Thermodynamic Perspective. PLoS ONE, 2013, 8, e70046.	1.1	8
142	Bacterial Cell Surface Heterogeneity: A Pathogen's Disguise. PLoS Pathogens, 2012, 8, e1002821.	2.1	21
143	How Do Bacteria Know They Are on a Surface and Regulate Their Response to an Adhering State?. PLoS Pathogens, 2012, 8, e1002440.	2.1	167
144	Bacterial Adhesion Forces with Substratum Surfaces and the Susceptibility of Biofilms to Antibiotics. Antimicrobial Agents and Chemotherapy, 2012, 56, 4961-4964.	1.4	50

#	Article	IF	Citations
145	Effect of adsorbed fibronectin on the differential adhesion of osteoblast-like cells and <i>Staphylococcus aureus</i> with and without fibronectin-binding proteins. Biofouling, 2012, 28, 1011-1021.	0.8	12
146	Adhesive Bond Stiffness of Staphylococcus aureus with and without Proteins That Bind to an Adsorbed Fibronectin Film. Applied and Environmental Microbiology, 2012, 78, 99-102.	1.4	18
147	Bacterial Cell Surface Damage Due to Centrifugal Compaction. Applied and Environmental Microbiology, 2012, 78, 120-125.	1.4	138
148	Bacterial Cell Surface Deformation under External Loading. MBio, 2012, 3, .	1.8	40
149	Environmental and centrifugal factors influencing the visco-elastic properties of oral biofilmsin vitro. Biofouling, 2012, 28, 913-920.	0.8	9
150	Influence of Prophylactic Antibiotics on Tissue Integration versus Bacterial Colonization on Poly(Methyl Methacrylate). International Journal of Artificial Organs, 2012, 35, 840-846.	0.7	5
151	Specific and Nonspecific Interactions between Salivary Proteins and Streptococcus mutans. ACS Symposium Series, 2012, , 355-371.	0.5	0
152	Biomaterial-Associated Infection: Locating the Finish Line in the Race for the Surface. Science Translational Medicine, 2012, 4, 153rv10.	5.8	575
153	Synthesis and Biological Evaluation of Gramicidin Sâ€Inspired Cyclic Mixed <i>α</i> /i>/ <i>β</i> â€Peptides. Chemistry and Biodiversity, 2012, 9, 2494-2506.	1.0	7
154	Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans. Soft Matter, 2012, 8, 6454.	1.2	44
155	The influence of ionic strength on the adhesive bond stiffness of oral streptococci possessing different surface appendages as probed using AFM and QCM-D. Soft Matter, 2012, 8, 9870.	1.2	20
156	Probing Colloid–Substratum Contact Stiffness by Acoustic Sensing in a Liquid Phase. Analytical Chemistry, 2012, 84, 4504-4512.	3.2	68
157	Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicanshyphae. BMC Microbiology, 2012, 12, 281.	1.3	46
158	Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology (United Kingdom), 2012, 158, 2975-2986.	0.7	188
159	Plaque-left-behind after brushing: intra-oral reservoir for antibacterial toothpaste ingredients. Clinical Oral Investigations, 2012, 16, 1435-1442.	1.4	16
160	Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation. Clinical Oral Investigations, 2012, 16, 1499-1506.	1.4	19
161	Persistence of a bioluminescent Staphylococcus aureus strain on and around degradable and non-degradable surgical meshes in a murine model. Acta Biomaterialia, 2012, 8, 3991-3996.	4.1	17
162	Role of Structure and Glycosylation of Adsorbed Protein Films in Biolubrication. PLoS ONE, 2012, 7, e42600.	1.1	39

#	Article	IF	CITATIONS
163	Use of hydroxyethyl starch for inducing red blood cell aggregation. Clinical Hemorheology and Microcirculation, 2012, 52, 27-35.	0.9	9
164	Contact-Killing of Adhering Streptococci by a Quaternary Ammonium Compound Incorporated in an Acrylic Resin. International Journal of Artificial Organs, 2012, 35, 854-863.	0.7	18
165	Composition and architecture of biofilms on used voice prostheses. Head and Neck, 2012, 34, 863-871.	0.9	30
166	A gentamicinâ€releasing coating for cementless hip prostheses—Longitudinal evaluation of efficacy using <i>in vitro</i> bioâ€optical imaging and its wideâ€spectrum antibacterial efficacy. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3220-3226.	2.1	29
167	Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomaterialia, 2012, 8, 2047-2055.	4.1	151
168	Design, synthesis and structural analysis of mixed $\hat{l}\pm/\hat{l}^2$ -peptides that adopt stable cyclic hairpin-like conformations. Tetrahedron, 2012, 68, 2391-2400.	1.0	12
169	The influence of Co–Cr and UHMWPE particles on infection persistence: An in vivo study in mice. Journal of Orthopaedic Research, 2012, 30, 341-347.	1.2	17
170	Surface thermodynamic homeostasis of salivary conditioning films through polar–apolar layering. Clinical Oral Investigations, 2012, 16, 109-115.	1.4	5
171	Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli. PLoS ONE, 2012, 7, e36917.	1.1	88
172	Biofilms in chronic diabetic foot ulcersâ€"a study of 2 cases. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 82, 383-385.	1.2	58
173	Oxygen-Generating Nanofiber Cell Scaffolds with Antimicrobial Properties. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 67-73.	4.0	89
174	Role of eDNA on the Adhesion Forces between <i>Streptococcus mutans</i> and Substratum Surfaces: Influence of Ionic Strength and Substratum Hydrophobicity. Langmuir, 2011, 27, 10113-10118.	1.6	80
175	DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter, 2011, 7, 2927.	1.2	77
176	Statistical Analysis of Long- and Short-Range Forces Involved in Bacterial Adhesion to Substratum Surfaces as Measured Using Atomic Force Microscopy. Applied and Environmental Microbiology, 2011, 77, 5065-5070.	1.4	76
177	Efficacy of natural antimicrobials in toothpaste formulations against oral biofilms in vitro. Journal of Dentistry, 2011, 39, 218-224.	1.7	71
178	Influence of Co-Cr Particles and Co-Cr Ions on the Growth of Staphylococcal Biofilms. International Journal of Artificial Organs, 2011, 34, 759-765.	0.7	13
179	In Vitro Interactions between Bacteria, Osteoblast-Like Cells and Macrophages in the Pathogenesis of Biomaterial-Associated Infections. PLoS ONE, 2011, 6, e24827.	1.1	46
180	Influence of fluoride–detergent combinations on the viscoâ€elasticity of adsorbed salivary protein films. European Journal of Oral Sciences, 2011, 119, 21-26.	0.7	21

#	Article	IF	Citations
181	Acute and substantive action of antimicrobial toothpastes and mouthrinses on oral biofilm in vitro. European Journal of Oral Sciences, 2011, 119, 151-155.	0.7	14
182	Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature Reviews Microbiology, 2011, 9, 27-38.	13.6	461
183	In Vitro Oral Biofilm Formation on Triclosan-Coated Sutures in the Absence and Presence of Additional Antiplaque Treatment. Journal of Oral and Maxillofacial Surgery, 2011, 69, 980-985.	0.5	15
184	Influence of surface roughness on streptococcal adhesion forces to composite resins. Dental Materials, 2011, 27, 770-778.	1.6	160
185	Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins. Clinical Oral Investigations, 2011, 15, 625-633.	1.4	113
186	Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber. Colloids and Surfaces B: Biointerfaces, 2011, 84, 76-81.	2.5	25
187	Antibacterial efficacy of a new gentamicinâ€coating for cementless prostheses compared to gentamicinâ€loaded bone cement. Journal of Orthopaedic Research, 2011, 29, 1654-1661.	1.2	32
188	Lengthâ€Scale Mediated Differential Adhesion of Mammalian Cells and Microbes. Advanced Functional Materials, 2011, 21, 3916-3923.	7.8	65
189	Evaluation of Readily Accessible Azoles as Mimics of the Aromatic Ring of <scp>D</scp> â€Phenylalanine in the Turn Region of Gramicidinâ€S. ChemMedChem, 2011, 6, 840-847.	1.6	17
190	<i>Ica</i> â€expression and gentamicin susceptibility of <i>Staphylococcus epidermidis</i> biofilm on orthopedic implant biomaterials. Journal of Biomedical Materials Research - Part A, 2011, 96A, 365-371.	2.1	29
191	Analysis of the contribution of sedimentation to bacterial mass transport in a parallel plate flow chamber. Colloids and Surfaces B: Biointerfaces, 2011, 87, 427-432.	2.5	28
192	Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers. Biomaterials, 2011, 32, 979-984.	5.7	35
193	Pluronic–lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. Biomaterials, 2011, 32, 6333-6341.	5.7	122
194	Acoustic sensing of the bacterium–substratum interface using QCM-D and the influence of extracellular polymeric substances. Journal of Colloid and Interface Science, 2011, 357, 135-138.	5.0	50
195	Surface thermodynamics and adhesion forces governing bacterial transmission in contact lens related microbial keratitis. Journal of Colloid and Interface Science, 2011, 358, 430-436.	5.0	20
196	Survival of Adhering Staphylococci during Exposure to a Quaternary Ammonium Compound Evaluated by Using Atomic Force Microscopy Imaging. Antimicrobial Agents and Chemotherapy, 2011, 55, 5010-5017.	1.4	45
197	Generalized Relationship between Numbers of Bacteria and Their Viability in Biofilms. Applied and Environmental Microbiology, 2011, 77, 5027-5029.	1.4	22
198	Force Analysis of Bacterial Transmission from Contact Lens Cases to Corneas, with the Contact Lens as the Intermediary., 2011, 52, 2565.		9

#	Article	IF	Citations
199	Macrophage response to staphylococcal biofilms on crosslinked poly(ethylene) glycol polymer coatings and common biomaterials in vitro., 2011, 21, 73-79.		14
200	In Vivo Evaluation of Bacterial Infection Involving Morphologically Different Surgical Meshes. Annals of Surgery, 2010, 251, 133-137.	2.1	85
201	A centrifuge method to measure particle cohesion forces to substrate surfaces: The use of a force distribution concept for data interpretation. International Journal of Pharmaceutics, 2010, 393, 89-96.	2.6	28
202	The potential for bio-optical imaging of biomaterial-associated infection in vivo. Biomaterials, 2010, 31, 1984-1995.	5.7	56
203	Interfacial re-arrangement in initial microbial adhesion to surfaces. Current Opinion in Colloid and Interface Science, 2010, 15, 510-517.	3.4	82
204	Oral biofilm models for mechanical plaque removal. Clinical Oral Investigations, 2010, 14, 403-409.	1.4	24
205	Spatiotemporal progression of localized bacterial peritonitis before and after open abdomen lavage monitored by in vivo bioluminescent imaging. Surgery, 2010, 147, 89-97.	1.0	9
206	Gentamicin release from commercially-available gentamicin-loaded PMMA bone cements in a prosthesis-related interfacial gap model and their antibacterial efficacy. BMC Musculoskeletal Disorders, 2010, 11, 258.	0.8	36
207	Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymerâ€brush coating. Journal of Biomedical Materials Research - Part A, 2010, 94A, 533-538.	2.1	24
208	Microbial adhesion to surfaceâ€grafted polyacrylamide brushes after longâ€term exposure to PBS and reconstituted freezeâ€dried saliva. Journal of Biomedical Materials Research - Part A, 2010, 94A, 997-1000.	2.1	7
209	In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly(ethylene) Tj ETQq $1\ 1$	0.784314 4.1	rgBT /Overlo
210	Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion. Acta Biomaterialia, 2010, 6, 4271-4276.	4.1	24
211	Weibull analyses of bacterial interaction forces measured using AFM. Colloids and Surfaces B: Biointerfaces, 2010, 78, 372-375.	2.5	30
212	Energy transfer, volumetric expansion, and removal of oral biofilms by nonâ€contact brushing. European Journal of Oral Sciences, 2010, 118, 177-182.	0.7	34
213	Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation. Applied and Environmental Microbiology, 2010, 76, 3405-3408.	1.4	265
214	Retention of Antimicrobial Activity in Plaque and Saliva following Mouthrinse Use in vivo. Caries Research, 2010, 44, 459-464.	0.9	26
215	Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model. Microbiology (United Kingdom), 2010, 156, 3073-3078.	0.7	36
216	Effects of metal-on-metal wear on the host immune system and infection in hip arthroplasty. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 81, 526-534.	1.2	70

#	Article	IF	Citations
217	Novel Analysis of Bacteriumâ''Substratum Bond Maturation Measured Using a Quartz Crystal Microbalance. Langmuir, 2010, 26, 11113-11117.	1.6	50
218	Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments. Journal of Dentistry, 2010, 38, 29-38.	1.7	100
219	The risk of biomaterial-associated infection after revision surgery due to an experimental primary implant infection. Biofouling, 2010, 26, 761-767.	0.8	39
220	Poisson Analysis of Streptococcal Bond-strengthening on Saliva-coated Enamel. Journal of Dental Research, 2009, 88, 841-845.	2.5	29
221	Impact of Hydrodynamics on Oral Biofilm Strength. Journal of Dental Research, 2009, 88, 922-926.	2.5	57
222	Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology (United Kingdom), 2009, 155, 1997-2003.	0.7	63
223	Metalâ€onâ€metal bearings in total hip arthroplasties: Influence of cobalt and chromium ions on bacterial growth and biofilm formation. Journal of Biomedical Materials Research - Part A, 2009, 88A, 711-716.	2.1	14
224	Real time noninvasive monitoring of contaminating bacteria in a soft tissue implant infection model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 88B, 123-129.	1.6	48
225	Bacterial adhesion to diamondâ€like carbon as compared to stainless steel. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 882-885.	1.6	22
226	Antimicrobial effects of an NO-releasing poly(ethylene vinylacetate) coating on soft-tissue implants in vitro and in a murine model. Acta Biomaterialia, 2009, 5, 1905-1910.	4.1	52
227	A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials, 2009, 30, 4738-4742.	5.7	65
228	Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket–adhesive–enamel junction in orthodontic treatment. European Journal of Oral Sciences, 2009, 117, 419-426.	0.7	50
229	SnapShot: Biofilms and Biomaterials; Mechanisms of Medical Device Related Infections. Biomaterials, 2009, 30, 4247-4248.	5.7	24
230	Mobile and immobile adhesion of staphylococcal strains to hydrophilic and hydrophobic surfaces. Journal of Colloid and Interface Science, 2009, 331, 60-64.	5.0	50
231	Synthesis and biological evaluation of asymmetric gramicidin S analogues containing modified d-phenylalanine residues. Bioorganic and Medicinal Chemistry, 2009, 17, 6318-6328.	1.4	14
232	Microbial biofilm growth vs. tissue integration: "The race for the surface―experimentally studied. Acta Biomaterialia, 2009, 5, 1399-1404.	4.1	239
233	Poisson Analysis of Streptococcal Bond Strengthening on Stainless Steel with and without a Salivary Conditioning Film. Langmuir, 2009, 25, 6227-6231.	1.6	34
234	Concepts for increasing gentamicin release from handmade bone cement beads. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 80, 508-513.	1.2	38

#	Article	IF	CITATIONS
235	A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 80, 514-519.	1.2	54
236	Adsorption of Pluronic F-127 on Surfaces with Different Hydrophobicities Probed by Quartz Crystal Microbalance with Dissipation. Langmuir, 2009, 25, 6245-6249.	1.6	94
237	Influence of Cell Surface Appendages on the Bacteriumâ^'Substratum Interface Measured Real-Time Using QCM-D. Langmuir, 2009, 25, 1627-1632.	1.6	62
238	Role of Interfacial Tensions in the Translocation of <i>Rhodococcus erythropolis</i> during Growth in a Two Phase Culture. Environmental Science & Env	4.6	16
239	Effect of Cinnamon Oil on icaA Expression and Biofilm Formation by Staphylococcus epidermidis. Applied and Environmental Microbiology, 2009, 75, 6850-6855.	1.4	126
240	Candida Biofilm Analysis in the Artificial Throat Using FISH. Methods in Molecular Biology, 2009, 499, 45-54.	0.4	5
241	Reduction of periodontal pathogens adhesion by antagonistic strains. Oral Microbiology and Immunology, 2008, 23, 43-48.	2.8	59
242	Copal Bone Cement Is More Effective in Preventing Biofilm Formation than Palacos R-G. Clinical Orthopaedics and Related Research, 2008, 466, 1492-1498.	0.7	84
243	recA mediated spontaneous deletions of the icaADBC operon of clinical Staphylococcus epidermidis isolates: a new mechanism of phenotypic variations. Antonie Van Leeuwenhoek, 2008, 94, 317-328.	0.7	17
244	Bacterial transmission from lens storage cases to contact lensesâ€"Effects of lens care solutions and silver impregnation of cases. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 237-243.	1.6	36
245	Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow. Biotechnology and Bioengineering, 2008, 100, 810-813.	1.7	20
246	Interaction forces between waterborne bacteria and activated carbon particles. Journal of Colloid and Interface Science, 2008, 322, 351-357.	5.0	22
247	Bacterial adhesion and growth on a polymer brush-coating. Biomaterials, 2008, 29, 4117-4121.	5.7	196
248	Increased adhesion of Enterococcus faecalis strains with bimodal electrophoretic mobility distributions. Colloids and Surfaces B: Biointerfaces, 2008, 64, 302-306.	2.5	9
249	Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids and Surfaces B: Biointerfaces, 2008, 64, 297-301.	2.5	69
250	Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata. Colloids and Surfaces B: Biointerfaces, 2008, 67, 276-278.	2.5	18
251	Adhesion and viability of waterborne pathogens on p-DADMAC coatings. Biotechnology and Bioengineering, 2008, 99, 165-169.	1.7	25
252	Surfactive and antibacterial activity of cetylpyridinium chloride formulations in vitro and in vivo. Journal of Clinical Periodontology, 2008, 35, 547-554.	2.3	21

#	Article	IF	CITATIONS
253	Influence of a chitosan on oral bacterial adhesion and growth <i>in vitro</i> . European Journal of Oral Sciences, 2008, 116, 493-495.	0.7	54
254	Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology (United) Tj ETQq0 0	O rgBT /O	verlock 10 Tf 245
255	Streptococcus mutans and Streptococcus intermedius Adhesion to Fibronectin Films Are Oppositely Influenced by Ionic Strength. Langmuir, 2008, 24, 10968-10973.	1.6	27
256	Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy. Langmuir, 2008, 24, 12990-12994.	1.6	84
257	Effects of Amine Fluoride on Biofilm Growth and Salivary Pellicles. Caries Research, 2008, 42, 19-27.	0.9	19
258	Bacterial colonization of polymer brush-coated and pristine silicone rubber implanted in infected pockets in mice. Journal of Antimicrobial Chemotherapy, 2008, 62, 1323-1325.	1.3	26
259	Determination of the Shear Force at the Balance between Bacterial Attachment and Detachment in Weak-Adherence Systems, Using a Flow Displacement Chamber. Applied and Environmental Microbiology, 2008, 74, 916-919.	1.4	73
260	Bond Strengthening in Oral Bacterial Adhesion to Salivary Conditioning Films. Applied and Environmental Microbiology, 2008, 74, 5511-5515.	1.4	55
261	<i>Staphylococcus aureus</i> -Fibronectin Interactions with and without Fibronectin-Binding Proteins and Their Role in Adhesion and Desorption. Applied and Environmental Microbiology, 2008, 74, 7522-7528.	1.4	38
262	Specific Molecular Recognition and Nonspecific Contributions to Bacterial Interaction Forces. Applied and Environmental Microbiology, 2008, 74, 2559-2564.	1.4	114
263	Treating natural disaster victims is dealing with shortages: An orthopaedics perspective. Technology and Health Care, 2008, 16, 255-259.	0.5	48
264	Sequence of Oral Bacterial Co-adhesion and Non-contact Brushing. Journal of Dental Research, 2007, 86, 421-425.	2.5	7
265	The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 78, 299-308.	1.2	107
266	Low-Load Compression Testing: a Novel Way of Measuring Biofilm Thickness. Applied and Environmental Microbiology, 2007, 73, 7023-7028.	1.4	34
267	Intermolecular Forces and Enthalpies in the Adhesion of Streptococcus mutans and an Antigen I/II-Deficient Mutant to Laminin Films. Journal of Bacteriology, 2007, 189, 2988-2995.	1.0	31
268	Lactobacilli: Important in Biofilm Formation on Voice Prostheses. Otolaryngology - Head and Neck Surgery, 2007, 137, 505-507.	1.1	20
269	Efficacy and mechanisms of non-antibacterial, chemical plaque control by dentifricesâ€"An in vitro study. Journal of Dentistry, 2007, 35, 294-301.	1.7	9
270	Adhesion and Viability of Two Enterococcal Strains on Covalently Grafted Chitosan and Chitosan/κ-Carrageenan Multilayers. Biomacromolecules, 2007, 8, 2960-2968.	2.6	80

#	Article	IF	Citations
271	Synthesis and Characterization of Surface-Grafted Polyacrylamide Brushes and Their Inhibition of Microbial Adhesion. Langmuir, 2007, 23, 5120-5126.	1.6	108
272	Interaction Forces between Salivary Proteins and <i>Streptococcus mutans</i> with and without Antigen I/II. Langmuir, 2007, 23, 9423-9428.	1.6	20
273	Transfer of bacteria between biomaterials surfaces in the operating room—An experimental study. Journal of Biomedical Materials Research - Part A, 2007, 80A, 790-799.	2.1	37
274	Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II. Colloids and Surfaces B: Biointerfaces, 2007, 54, 193-199.	2.5	11
275	Prevention of pin tract infection in external stainless steel fixator frames using electric current in a goat model. Biomaterials, 2007, 28, 2122-2126.	5.7	72
276	Assessing infection risk in implanted tissue-engineered devices. Biomaterials, 2007, 28, 5148-5154.	5.7	51
277	Biofilm formation on surface characterized micro-implants for skeletal anchorage in orthodontics. Biomaterials, 2007, 28, 2032-2040.	5.7	58
278	The phenomenon of infection with abdominal wall reconstruction. Biomaterials, 2007, 28, 2314-2327.	5.7	158
279	Surface charge influences enterococcal prevalence in mixed-species biofilms. Journal of Applied Microbiology, 2007, 102, 1254-1260.	1.4	19
280	Chitosan adsorption to salivary pellicles. European Journal of Oral Sciences, 2007, 115, 303-307.	0.7	34
281	The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials, 2007, 28, 4105-4112.	5.7	88
282	Inhibitive Effect of Antibiotic-Loaded Beads to Cure Chronic Osteomyelitis in Developing Country: Hand-made vs Commercial Beads. IFMBE Proceedings, 2007, , 113-117.	0.2	0
283	Removal of Two Waterborne Pathogenic Bacterial Strains by Activated Carbon Particles Prior to and after Charge Modification. Environmental Science & E	4.6	27
284	Evaluation of measures to decrease intra-operative bacterial contamination in orthopaedic implant surgery. Journal of Hospital Infection, 2006, 62, 174-180.	1.4	110
285	Influence of Day and Night Wear on Surface Properties of Silicone Hydrogel Contact Lenses and Bacterial Adhesion. Cornea, 2006, 25, 516-523.	0.9	27
286	Intraoperative Contamination Influences Wound Discharge and Periprosthetic Infection. Clinical Orthopaedics and Related Research, 2006, 452, 236-241.	0.7	49
287	A method to study sustained antimicrobial activity of rinse and dentifrice components on biofilm viability in vivo. Journal of Clinical Periodontology, 2006, 33, 14-20.	2.3	38
288	Development of an accommodating intra-ocular lensâ€"In vitro prevention of re-growth of pig and rabbit lens capsule epithelial cells. Biomaterials, 2006, 27, 5554-5560.	5.7	19

#	Article	IF	CITATIONS
289	Multivariate analysis of surface physico-chemical properties controlling biofilm formation on orthodontic adhesives prior to and after fluoride and chlorhexidine treatment. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 401-408.	1.6	7
290	Biomechanical and surface physico-chemical analyses of used osteosynthesis plates and screws—Potential for reuse in developing countries?. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 236-244.	1.6	13
291	Antimicrobial efficacy of gentamicin-loaded acrylic bone cements with fusidic acid or clindamycin added. Journal of Orthopaedic Research, 2006, 24, 291-299.	1.2	32
292	Early biofilm formation and the effects of antimicrobial agents on orthodontic bonding materials in a parallel plate flow chamber. European Journal of Orthodontics, 2006, 28, 1-7.	1.1	38
293	Interactive Forces between Co-aggregating and Non-co-aggregating Oral Bacterial Pairs. Journal of Dental Research, 2006, 85, 231-234.	2.5	32
294	Influence of Biosurfactant on Interactive Forces between Mutans Streptococci and Enamel Measured by Atomic Force Microscopy. Journal of Dental Research, 2006, 85, 54-58.	2.5	20
295	Microbial Adhesion in Flow Displacement Systems. Clinical Microbiology Reviews, 2006, 19, 127-141.	5.7	234
296	The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria: an in vitro study with clinical strains. Journal of Antimicrobial Chemotherapy, 2006, 58, 1287-1290.	1.3	53
297	Effects of Quaternary Ammonium Silane Coatings on Mixed Fungal and Bacterial Biofilms on Tracheoesophageal Shunt Prostheses. Applied and Environmental Microbiology, 2006, 72, 3673-3677.	1.4	94
298	Influence of Culture Heterogeneity in Cell Surface Charge on Adhesion and Biofilm Formation by Enterococcus faecalis. Journal of Bacteriology, 2006, 188, 2421-2426.	1.0	90
299	Enterococcus faecalis strains show culture heterogeneity in cell surface charge. Microbiology (United Kingdom), 2006, 152, 807-814.	0.7	32
300	Resistance to a polyquaternium-1 lens care solution and isoelectric points of Pseudomonas aeruginosa strains. Journal of Antimicrobial Chemotherapy, 2006, 57, 764-766.	1.3	52
301	Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology (United Kingdom), 2006, 152, 2673-2682.	0.7	90
302	Perioperative Contamination in Primary Total Hip Arthroplasty. Clinical Orthopaedics and Related Research, 2005, &NA, 136-139.	0.7	34
303	The influence of cyclic loading on gentamicin release from acrylic bone cements. Journal of Biomechanics, 2005, 38, 953-957.	0.9	10
304	Microcalorimetric study on the influence of temperature on bacterial coaggregation. Journal of Colloid and Interface Science, 2005, 287, 461-467.	5.0	8
305	Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis. Biomaterials, 2005, 26, 6731-6735.	5.7	90
306	Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids and Surfaces B: Biointerfaces, 2005, 41, 33-41.	2.5	76

#	Article	IF	CITATIONS
307	Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber. Colloids and Surfaces B: Biointerfaces, 2005, 46, 1-6.	2.5	48
308	Effect of pulsed ultrasound in combination with gentamicin on bacterial viability in biofilms on bone cements in vivo. Journal of Applied Microbiology, 2005, 99, 443-448.	1.4	78
309	Microbubble-induced detachment of coadhering oral bacteria from salivary pellicles. European Journal of Oral Sciences, 2005, 113, 326-332.	0.7	20
310	Gentamicin-loaded bone cement with clindamycin or fusidic acid added: Biofilm formation and antibiotic release. Journal of Biomedical Materials Research - Part A, 2005, 73A, 165-170.	2.1	54
311	The influence of ultrasound on the release of gentamicin from antibiotic-loaded acrylic beads and bone cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 75B, 1-5.	1.6	27
312	In vitro leakage susceptibility of tracheoesophageal shunt prostheses in the absence and presence of a biofilm. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 23-28.	1.6	9
313	Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2005, 73B, 347-354.	1.6	95
314	Effect of dairy products on the lifetime of Provox2 voice prostheses in vitro and in vivo. Head and Neck, 2005, 27, 471-477.	0.9	41
315	Bacterial Transmission from Contact Lenses to Porcine Corneas: An Ex Vivo Study., 2005, 46, 2042.		17
316	Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. Journal of Bone and Joint Surgery: British Volume, 2005, 87-B, 272-276.	3.4	57
317	Pseudomonas aeruginosabiofilm formation and slime excretion on antibiotic-loaded bone cement. Monthly Notices of the Royal Astronomical Society: Letters, 2005, 76, 109-114.	1.2	72
318	Atomic force microscopy study on specificity and non-specificity of interaction forces between Enterococcus faecalis cells with and without aggregation substance. Microbiology (United Kingdom), 2005, 151, 2459-2464.	0.7	28
319	Influence of Fluid Shear and Microbubbles on Bacterial Detachment from a Surface. Applied and Environmental Microbiology, 2005, 71, 3668-3673.	1.4	94
320	Oral Probiotics for Maternal and Newborn Health. Journal of Clinical Gastroenterology, 2005, 39, 353-354.	1.1	11
321	Analysis of the Interfacial Properties of Fibrillated and Nonfibrillated Oral Streptococcal Strains from Electrophoretic Mobility and Titration Measurements: Evidence for the Shortcomings of the â€ [*] Classical Soft-Particle Approach'. Langmuir, 2005, 21, 11268-11282.	1.6	74
322	The Influence of Biosurfactants Released byS. mitisBMS on the Adhesion of Pioneer Strains and Cariogenic Bacteria. Biofouling, 2004, 20, 261-267.	0.8	39
323	Electric Current-Induced Detachment of Staphylococcus epidermidis Biofilms from Surgical Stainless Steel. Applied and Environmental Microbiology, 2004, 70, 6871-6874.	1.4	104
324	Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. Microbiology (United Kingdom), 2004, 150, 1015-1022.	0.7	44

#	Article	IF	CITATIONS
325	Influence of Weight on Removal of Co-Adhering Bacteria from Salivary Pellicles by Different Modes of Brushing. Caries Research, 2004, 38, 85-90.	0.9	7
326	Bacterial Strains Isolated from Different Niches Can Exhibit Different Patterns of Adhesion to Substrata. Applied and Environmental Microbiology, 2004, 70, 3758-3760.	1.4	69
327	Multiple linear regression analysis of bacterial deposition to polyurethane coatings after conditioning film formation in the marine environment. Microbiology (United Kingdom), 2004, 150, 1779-1784.	0.7	71
328	Dynamic Cell Surface Hydrophobicity of Lactobacillus Strains with and without Surface Layer Proteins. Journal of Bacteriology, 2004, 186, 6647-6650.	1.0	53
329	Prevention of biofilm formation by dairy products and N-Acetylcysteine on voice prostheses in an artificial throat. Acta Oto-Laryngologica, 2004, 124, 726-731.	0.3	39
330	On the wettability of soft tissues in the human oral cavity. Archives of Oral Biology, 2004, 49, 671-673.	0.8	19
331	Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials, 2004, 25, 545-556.	5.7	254
332	Use and re-use of orthopedic implants in developing countries. Journal of Biomedical Materials Research Part B, 2004, 69B, 249-250.	3.0	5
333	Physicochemical factors influencing bacterial transfer from contact lenses to surfaces with different roughness and wettability. Journal of Biomedical Materials Research Part B, 2004, 71B, 336-342.	3.0	31
334	Plasma-treated polystyrene surfaces: model surfaces for studying cell–biomaterial interactions. Biomaterials, 2004, 25, 1735-1747.	5.7	201
335	Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. Journal of Colloid and Interface Science, 2004, 278, 251-254.	5.0	56
336	A surface physicochemical rationale for calculus formation in the oral cavity. Journal of Crystal Growth, 2004, 261, 87-92.	0.7	7
337	Path-dependency of the interaction between coaggregating and between non-coaggregating oral bacterial pairs—a thermodynamic approach. Colloids and Surfaces B: Biointerfaces, 2004, 37, 53-60.	2.5	1
338	Comparison of Atomic Force Microscopy Interaction Forces between Bacteria and Silicon Nitride Substrata for Three Commonly Used Immobilization Methods. Applied and Environmental Microbiology, 2004, 70, 5441-5446.	1.4	119
339	Microbial Adhesion to Poly(ethylene oxide) Brushes:Â Influence of Polymer Chain Length and Temperature. Langmuir, 2004, 20, 10949-10955.	1.6	226
340	Influence of different combinations of bacteria and yeasts in voice prosthesis biofilms on air flow resistance. Antonie Van Leeuwenhoek, 2003, 83, 45-55.	0.7	21
341	Increased release of gentamicin from acrylic bone cements under influence of low-frequency ultrasound. Journal of Controlled Release, 2003, 92, 369-374.	4.8	26
342	Fourier transform infrared spectroscopy studies of alginate-PLL capsules with varying compositions. Journal of Biomedical Materials Research Part B, 2003, 67A, 172-178.	3.0	105

#	Article	IF	Citations
343	The release of gentamicin from acrylic bone cements in a simulated prosthesis-related interfacial gap. Journal of Biomedical Materials Research Part B, 2003, 64B, 1-5.	3.0	32
344	Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials, 2003, 24, 305-312.	5.7	122
345	Multiple surface properties of worn RGP lenses and adhesion of Pseudomonas aeruginosa. Biomaterials, 2003, 24, 1663-1670.	5.7	45
346	Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials, 2003, 24, 1829-1831.	5.7	172
347	Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials, 2003, 24, 2707-2710.	5.7	63
348	Cell surface hydrophobicity is conveyed by S-layer proteins—a study in recombinant lactobacilli. Colloids and Surfaces B: Biointerfaces, 2003, 28, 127-134.	2.5	65
349	Bacterial deposition to fluoridated and non-fluoridated polyurethane coatings with different elastic modulus and surface tension in a parallel plate and a stagnation point flow chamber. Colloids and Surfaces B: Biointerfaces, 2003, 32, 179-190.	2.5	63
350	Non-contact removal of coadhering and non-coadhering bacterial pairs from pellicle surfaces by sonic brushing and de novo adhesion. European Journal of Oral Sciences, 2003, 111, 459-464.	0.7	17
351	The Influence of Antimicrobial Peptides and Mucolytics on the Integrity of Biofilms Consisting of Bacteria and Yeasts as Affecting Voice Prosthetic Air Flow Resistances. Biofouling, 2003, 19, 347-353.	0.8	16
352	Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber. Microbiology (United Kingdom), 2003, 149, 3239-3246.	0.7	131
353	On Relations between Microscopic and Macroscopic Physicochemical Properties of Bacterial Cell Surfaces:Â An AFM Study onStreptococcus mitisStrains. Langmuir, 2003, 19, 2372-2377.	1.6	46
354	Enthalpy of interaction between coaggregating and non-coaggregating oral bacterial pairs—a microcalorimetric study. Journal of Microbiological Methods, 2003, 55, 241-247.	0.7	23
355	The Effect of Dissolved Organic Carbon on Bacterial Adhesion to Conditioning Films Adsorbed on Glass from Natural Seawater Collected during Different Seasons. Biofouling, 2003, 19, 391-397.	0.8	59
356	Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 313-324.	1.9	72
357	Comparison of Velocity Profiles for Different Flow Chamber Designs Used in Studies of Microbial Adhesion to Surfaces. Applied and Environmental Microbiology, 2003, 69, 6280-6287.	1.4	109
358	Influence of Oral Detergents and Chlorhexidine on Soft-Layer Electrokinetic Parameters of the Acquired Enamel Pellicle. Caries Research, 2003, 37, 431-436.	0.9	8
359	Influence of the Provox Flush \hat{A}° , Blowing and Imitated Coughing on Voice Prosthetic Biofilms In Vitro. Acta Oto-Laryngologica, 2003, 123, 547-551.	0.3	12
360	The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthopaedica, 2003, 74, 670-676.	1.4	95

#	Article	IF	Citations
361	Detection of Biomaterial-Associated Infections in Orthopaedic Joint Implants. Clinical Orthopaedics and Related Research, 2003, 413, 261-268.	0.7	196
362	Adhesion to Bile Drain Materials and Physicochemical Surface Properties of Enterococcus faecalis Strains Grown in the Presence of Bile. Applied and Environmental Microbiology, 2002, 68, 3855-3858.	1.4	25
363	Functional Variation of the Antigen I/II Surface Protein in Streptococcus mutans and Streptococcus intermedius. Infection and Immunity, 2002, 70, 249-256.	1.0	48
364	Adhesion of blood platelets under flow to wettability gradient polyethylene surfaces made in a shielded gas plasma. Journal of Adhesion Science and Technology, 2002, 16, 1703-1713.	1.4	20
365	Comparison of the Microbial Composition of Voice Prosthesis Biofilms from Patients Requiring Frequent versus Infrequent Replacement. Annals of Otology, Rhinology and Laryngology, 2002, 111, 200-203.	0.6	71
366	Influence of abciximab on the adhesion of platelets on a shielded plasma gradient prepared on polyethylene. Thrombosis Research, 2002, 108, 57-62.	0.8	8
367	Softness of the bacterial cell wall of Streptococcus mitis as probed by microelectrophoresis. Electrophoresis, 2002, 23, 2007.	1.3	27
368	Hydrophobicity of Peritoneal Tissues in the Rat. Journal of Colloid and Interface Science, 2002, 253, 470-471.	5.0	10
369	Chemistry and biocompatibility of alginate-PLL capsules for immunoprotection of mammalian cells. Journal of Biomedical Materials Research Part B, 2002, 60, 252-259.	3.0	99
370	Tissue responses against immunoisolating alginate-PLL capsules in the immediate posttransplant period. Journal of Biomedical Materials Research Part B, 2002, 62, 430-437.	3.0	74
371	Influence of dentifrices and dietary components in saliva on wettability of pellicle-coated enamelin vitroandin vivo. European Journal of Oral Sciences, 2002, 110, 434-438.	0.7	22
372	The influence of subinhibitory concentrations of ampicillin and vancomycin on physico-chemical surface characteristics of Enterococcus faecalis 1131. Colloids and Surfaces B: Biointerfaces, 2002, 24, 285-295.	2.5	12
373	Electric double layer interactions in bacterial adhesion to surfaces. Surface Science Reports, 2002, 47, 1-32.	3.8	404
374	Platelet adhesion and activation on a shielded plasma gradient prepared on polyethylene. Biomaterials, 2002, 23, 757-766.	5.7	59
375	In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials, 2002, 23, 1417-1423.	5.7	433
376	The Influence of Radiotherapy on the Lifetime of Silicone Rubber Voice Prostheses in Laryngectomized Patients. Laryngoscope, 2002, 112, 1680-1683.	1.1	25
377	Pathogenesis and prevention of biomaterial centered infections. Journal of Materials Science: Materials in Medicine, 2002, 13, 717-722.	1.7	114
378	Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions. Microbiology (United Kingdom), 2002, 148, 597-603.	0.7	53

#	Article	IF	CITATIONS
379	Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. Microbiology (United Kingdom), 2002, 148, 1161-1169.	0.7	100
380	Enterococcus faecalis surface proteins determine its adhesion mechanism to bile drain materials. Microbiology (United Kingdom), 2002, 148, 1863-1870.	0.7	36
381	Hexametaphosphate effects on tooth surface conditioning film chemistry-in vitro and in vivo studies. Journal of Clinical Dentistry, 2002, 13, 38-43.	0.9	15
382	Bacterial detachment from salivary conditioning films by dentifrice supernates. Journal of Clinical Dentistry, 2002, 13, 44-9.	0.9	9
383	Influence of wear and overwear on surface properties of etafilcon A contact lenses and adhesion of Pseudomonas aeruginosa. Investigative Ophthalmology and Visual Science, 2002, 43, 3646-53.	3.3	27
384	Effects of cell surface damage on surface properties and adhesion of Pseudomonas aeruginosa. Journal of Microbiological Methods, 2001, 45, 95-101.	0.7	81
385	Infection of orthopedic implants and the use of antibiotic-loaded bone cements: A review. Acta Orthopaedica, 2001, 72, 557-571.	1.4	307
386	Reversibility of Bacterial Adhesion at an Electrode Surface. Langmuir, 2001, 17, 2851-2856.	1.6	34
387	[18] Measurements of softness of microbial cell surfaces. Methods in Enzymology, 2001, 337, 270-276.	0.4	5
388	Charge transfer during staphylococcal adhesion to TiNOX® coatings with different specific resistivity. Biophysical Chemistry, 2001, 91, 273-279.	1.5	51
389	Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. Ultramicroscopy, 2001, 86, 113-120.	0.8	83
390	Staphylococcus aureus biofilm formation on different gentamicin-loaded polymethylmethacrylate bone cements. Biomaterials, 2001, 22, 1607-1611.	5.7	143
391	Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials, 2001, 22, 3217-3224.	5.7	361
392	Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 186, 211-219.	2.3	26
393	Electrostatic interactions in the adhesion of an ion-penetrable and ion-impenetrable bacterial strain to glass. Colloids and Surfaces B: Biointerfaces, 2001, 20, 105-117.	2.5	40
394	Lack of effect of an externally applied electric field on bacterial adhesion to glass. Colloids and Surfaces B: Biointerfaces, 2001, 20, 189-194.	2.5	16
395	Cell Surface Analysis and Adhesion of Chemically Modified Streptococci. Journal of Colloid and Interface Science, 2001, 241, 327-332.	5.0	18
396	Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prostheses?an electron microscopical study. Journal of Biomedical Materials Research Part B, 2001, 58, 556-563.	3.0	29

#	Article	IF	Citations
397	Electric field induced desorption of bacteria from a conditioning film covered substratum. Biotechnology and Bioengineering, 2001, 76, 395-399.	1.7	93
398	Adhesive interactions between voice prosthetic yeast and bacteria on silicone rubber in the absence and presence of saliva. Antonie Van Leeuwenhoek, 2001, 79, 337-343.	0.7	27
399	Adhesion ofEnterococcus faecalis 1131 grown under subinhibitory concentrations of ampicillin and vancomycin to a hydrophilic and a hydrophobic substratum. FEMS Microbiology Letters, 2001, 203, 75-79.	0.7	20
400	Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces. Applied and Environmental Microbiology, 2001, 67, 2531-2537.	1.4	178
401	Electrophoretic Mobility Distributions of Single-Strain Microbial Populations. Applied and Environmental Microbiology, 2001, 67, 491-494.	1.4	58
402	Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. Journal of Antimicrobial Chemotherapy, 2001, 47, 885-891.	1.3	258
403	Biofilm Formation on Voice Prostheses: In vitro Influence of Probiotics. Annals of Otology, Rhinology and Laryngology, 2001, 110, 946-951.	0.6	32
404	The electrophoretic softness of the surface of Staphylococcus epidermidis cells grown in a liquid medium and on a solid agar. Microbiology (United Kingdom), 2001, 147, 757-762.	0.7	53
405	Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2001, 48, 7-13.	1.3	483
406	Adhesion of Pseudomonas aeruginosa to contact lenses after exposure to multi-purpose lens care solutions. Journal of Adhesion Science and Technology, 2001, 15, 1453-1461.	1.4	2
407	Biofilm Formation on Voice Prostheses: Influence of Dairy Products in vitro. Acta Oto-Laryngologica, 2000, 120, 92-99.	0.3	21
408	Controlled electrophoretic deposition of bacteria to surfaces for the design of biofilms. Biotechnology and Bioengineering, 2000, 67, 117-120.	1.7	86
409	Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers., 2000, 50, 208-214.		156
410	Limiting values for bacterial ? potentials. , 2000, 50, 463-464.		9
411	Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials, 2000, 21, 1981-1987.	5.7	233
412	Pair distribution functions of colloidal particles on a quartz collector in a parallel plate and stagnation point flow chamber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173, 231-234.	2.3	5
413	Adsorption of urinary components influences the zeta potential of uropathogen surfaces. Colloids and Surfaces B: Biointerfaces, 2000, 19, 13-17.	2.5	16
414	X-ray photoelectron spectroscopy for the study of microbial cell surfaces. Surface Science Reports, 2000, 39, 1-24.	3.8	118

#	Article	IF	Citations
415	Antimicrobial Activity of Synthetic Salivary Peptides Against Voice Prosthetic Microorganisms. Laryngoscope, 2000, 110, 321-321.	1.1	30
416	Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiology Letters, 2000, 189, 311-315.	0.7	112
417	Purification and characterization of a surface-binding protein fromLactobacillus fermentumRC-14 that inhibits adhesion ofEnterococcus faecalis1131. FEMS Microbiology Letters, 2000, 190, 177-180.	0.7	163
418	Effect of the adhesive antibiotic TA on adhesion and initial growth of E. coli on silicone rubber. FEMS Microbiology Letters, 2000, 192, 97-100.	0.7	18
419	Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli – a teleologic approach. World Journal of Urology, 2000, 18, 422-426.	1.2	54
420	Initial microbial adhesion events: mechanisms and implications. , 2000, , 25-36.		21
421	Inhibition of Streptococcus mutans NS Adhesion to Glass with and without a Salivary Conditioning Film by Biosurfactant- Releasing Streptococcus mitis Strains. Applied and Environmental Microbiology, 2000, 66, 659-663.	1.4	79
422	Direct Probing by Atomic Force Microscopy of the Cell Surface Softness of a Fibrillated and Nonfibrillated Oral Streptococcal Strain. Biophysical Journal, 2000, 78, 2668-2674.	0.2	84
423	Dot assay for determining adhesive interactions between yeasts and bacteria under controlled hydrodynamic conditions. Journal of Microbiological Methods, 2000, 40, 225-232.	0.7	13
424	Preliminary Observations on Influence of Dairy Products on Biofilm Removal from Silicone Rubber Voice Prostheses in vitro. Journal of Dairy Science, 2000, 83, 641-647.	1.4	29
425	Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation. Acta Orthopaedica, 2000, 71, 625-629.	1.4	126
426	Interaction of Two Oral Streptococcal Strains with Physicochemically Characterized Fluorosilane Diffusion Gradient Surfaces. Langmuir, 2000, 16, 2845-2850.	1.6	9
427	Caffeinated soft drinks reduce bacterial prevalence in voice prosthetic biofilms. Biofouling, 2000, 16, 69-76.	0.8	7
428	Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber. Journal of Adhesion Science and Technology, 2000, 14, 1527-1537.	1.4	12
429	Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers., 2000, 50, 208.		1
430	Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. Journal of Medical Microbiology, 2000, 49, 713-718.	0.7	67
431	[38] Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods in Enzymology, 1999, 310, 523-534.	0.4	62
432	[31] Biosurfactants produced by Lactobacillus. Methods in Enzymology, 1999, 310, 426-433.	0.4	64

#	Article	IF	Citations
433	Effect of gentamicin loaded PMMA bone cement onStaphylococcus aureusbiofilm formation. Biofouling, 1999, 14, 249-254.	0.8	6
434	In vitro Adhesion to Enamel and in vivo Colonization of Tooth Surfaces by Lactobacilli from a Bio–Yoghurt. Caries Research, 1999, 33, 403-404.	0.9	70
435	The influence of surface chemistry on the control of cellular behavior: studies with a marine diatom and a wettability gradient. Colloids and Surfaces B: Biointerfaces, 1999, 15, 71-80.	2.5	29
436	Correlation between genetic, physico-chemical surface characteristics and adhesion of four strains of Lactobacillus. Colloids and Surfaces B: Biointerfaces, 1999, 13, 75-81.	2.5	15
437	Role of acid–base interactions on the adhesion of oral streptococci and actinomyces to hexadecane and chloroform—influence of divalent cations and comparison between free energies of partitioning and free energies obtained by extended DLVO analysis. Colloids and Surfaces B: Biointerfaces, 1999, 14, 169-177.	2.5	30
438	Protein adsorption on gradient surfaces on polyethylene prepared in a shielded gas plasma. Colloids and Surfaces B: Biointerfaces, 1999, 15, 89-97.	2.5	50
439	Simultaneous monitoring of protein adsorption at the solid–liquid interface from sessile solution droplets by ellipsometry and axisymmetric drop shape analysis by profile. Colloids and Surfaces B: Biointerfaces, 1999, 15, 227-233.	2.5	17
440	Recalcitrance of Streptococcus mutans biofilms towards detergent-stimulated detachment. European Journal of Oral Sciences, 1999, 107, 236-243.	0.7	18
441	Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiology Reviews, 1999, 23, 179-230.	3.9	800
442	Influence of aeration of Candida albicansduring culturing on their surface aggregation in the presence of adhering Streptococcus gordonii. FEMS Immunology and Medical Microbiology, 1999, 26, 69-74.	2.7	5
443	or not to treat?. Nature Medicine, 1999, 5, 358-359.	15.2	58
444	Adhesion and surface-aggregation of Candida albicans from saliva on acrylic surfaces with adhering bacteria as studied in a parallel plate flow chamber. Antonie Van Leeuwenhoek, 1999, 75, 351-359.	0.7	33
445	Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly(methacrylates). Journal of Materials Science: Materials in Medicine, 1999, 10, 853-855.	1.7	54
446	Effect of Consumption of Dairy Products with Probiotic Bacteria on Biofilm Formation on Silicone Rubber Implant Surfaces in an Artificial Throat. Food and Bioproducts Processing, 1999, 77, 156-158.	1.8	4
447	Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiology Reviews, 1999, 23, 179-229.	3.9	343
448	How a fungus escapes the water to grow into the air. Current Biology, 1999, 9, 85-88.	1.8	298
449	Surface Aggregation of Candida albicanson Glass in the Absence and Presence of Adhering Streptococcus gordoniiin a Parallel-Plate Flow Chamber: A Surface Thermodynamical Analysis Based on Acid–Base Interactions. Journal of Colloid and Interface Science, 1999, 212, 495-502.	5.0	27
450	Deposition of Oral Bacteria and Polystyrene Particles to Quartz and Dental Enamel in a Parallel Plate and Stagnation Point Flow Chamber. Journal of Colloid and Interface Science, 1999, 220, 410-418.	5.0	16

#	Article	IF	Citations
451	Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber. Physical Chemistry Chemical Physics, 1999, 1, 4423-4427.	1.3	40
452	Deposition of Polystyrene Particles in a Parallel Plate Flow Chamber under Attractive and Repulsive Electrostatic Conditions. Langmuir, 1999, 15, 2620-2626.	1.6	8
453	Comparison of Particle Deposition in a Parallel Plate and a Stagnation Point Flow Chamber. Langmuir, 1999, 15, 4671-4677.	1.6	29
454	Biofilm Formation In Vivo on Perfluoro-Alkylsiloxane–Modified Voice Prostheses. JAMA Otolaryngology, 1999, 125, 1329.	1.5	44
455	In vitro and in vivo microbial adhesion and growth on argon plasma-treated silicone rubber voice prostheses. Journal of Materials Science: Materials in Medicine, 1998, 9, 147-157.	1.7	50
456	The interaction between saliva and Actinobacillus actinomycetemcomitans influenced by the zeta potential. Antonie Van Leeuwenhoek, 1998, 73, 279-288.	0.7	7
457	Adhesive interactions between medically important yeasts and bacteria. FEMS Microbiology Reviews, 1998, 21, 321-336.	3.9	40
458	Electrophoretic Mobilities of Protein-Coated Hexadecane Droplets at Different pH. Journal of Colloid and Interface Science, 1998, 205, 185-190.	5.0	17
459	Site Selectivity in the Deposition and Redeposition of Polystyrene Particles to Glass. Journal of Colloid and Interface Science, 1998, 208, 351-352.	5.0	13
460	The effect of buttermilk consumption on biofilm formation on silicone rubber voice prostheses in an artificial throat. European Archives of Oto-Rhino-Laryngology, 1998, 255, 410-413.	0.8	40
461	Lateral and Perpendicular Interaction Forces Involved in Mobile and Immobile Adhesion of Microorganisms on Model Solid Surfaces. Current Microbiology, 1998, 37, 319-323.	1.0	22
462	Adhesion of yeasts and bacteria to fluoro-alkylsiloxane layers chemisorbed on silicone rubber. Colloids and Surfaces B: Biointerfaces, 1998, 10, 179-190.	2.5	49
463	A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids and Surfaces B: Biointerfaces, 1998, 11, 213-221.	2.5	210
464	`Soft-particle' analysis of the electrophoretic mobility of a fibrillated and non-fibrillated oral streptococcal strain: Streptococcus salivarius. Biophysical Chemistry, 1998, 74, 251-255.	1.5	84
465	Interference in Initial Adhesion of Uropathogenic Bacteria and Yeasts to Silicone Rubber by A Lactobacillus Acidophilus Biosurfactant. Journal of Medical Microbiology, 1998, 47, 1081-1085.	0.7	178
466	Efficacy of Ophthalmic Solutions to Detach Adhering Pseudomonas aeruginosa from Contact Lenses. Cornea, 1998, 17, 293-300.	0.9	33
467	Adhesive interactions between medically important yeasts and bacteria. FEMS Microbiology Reviews, 1998, 21, 321-336.	3.9	1
468	Adhesion of Pseudomonas aeruginosa to silicone rubber in a parallel plate flow chambe in the absence and presence of nutrient broth. Microbiology (United Kingdom), 1997, 143, 2569-2574.	0.7	37

#	Article	IF	CITATIONS
469	Adhesion of coagulase-negative staphylococci grouped according to Physico-chemical surface properties. Microbiology (United Kingdom), 1997, 143, 3861-3870.	0.7	41
470	Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber. Journal of Adhesion Science and Technology, 1997, 11, 957-969.	1.4	54
471	The influence of calcium on the initial adhesion of <i>S. thermophilus < li>to stainless steel under flow studied by metallurgical microscopy. Biofouling, 1997, 11, 167-176.</i>	0.8	26
472	Inhibition of initial adhesion of uropathogenic Enterococcus faecalis to solid substrata by an adsorbed biosurfactant layer from Lactobacillus acidophilus. Urology, 1997, 49, 790-794.	0.5	77
473	Cluster analysis of genotypically characterized Lactobacillus species based on physicochemical cell surface properties and their relationship with adhesion to hexadecane. Canadian Journal of Microbiology, 1997, 43, 284-291.	0.8	29
474	A quantitative model for the surface restructuring of repeatedly plasma treated silicone rubber. Plasmas and Polymers, 1997, 2, 41-51.	1.5	7
475	A new method for in vivo evaluation of biofilms on surface-modified silicone rubber voice prostheses. European Archives of Oto-Rhino-Laryngology, 1997, 254, 261-263.	0.8	44
476	Tracking of colloidal particles using microscopic image sequence analysis Application to particulate microelectrophoresis and particle deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 125, 85-92.	2.3	23
477	Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Science Reports, 1997, 29, 3-30.	3.8	154
478	Adhesion of Lactobacillus species in urine and phosphate buffer to silicone rubber and glass under flow. Biomaterials, 1997, 18, 87-91.	5.7	41
479	Growth of Fibroblasts and Endothelial Cells on Wettability Gradient Surfaces. Journal of Colloid and Interface Science, 1997, 188, 209-217.	5.0	61
480	Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Applied and Environmental Microbiology, 1997, 63, 3810-3817.	1.4	122
481	Particle Deposition to Protruding Local Sinks Adhering on a Collector Surface. Langmuir, 1996, 12, 3241-3244.	1.6	4
482	Physico-chemical and adhesive cell surface properties of Lactobacillus strains grown in old formula and new, standardized MRS medium. Journal of Microbiological Methods, 1996, 27, 239-242.	0.7	11
483	Biosurfactants from thermophilic dairy streptococci and their potential role in the fouling control of heat exchanger plates. Journal of Industrial Microbiology, 1996, 16, 15-21.	0.9	25
484	Detection by physico-chemical techniques of an amphiphilic surface component on Streptococcus mitis strains involved in non-electrostatic binding to surfaces. European Journal of Oral Sciences, 1996, 104, 48-55.	0.7	13
485	Influence of temperature on the co-adhesion of oral microbial pairs in saliva. European Journal of Oral Sciences, 1996, 104, 372-377.	0.7	14
486	Kinetics of Interfacial Tension Changes during Protein Adsorption from Sessile Droplets on FEP–Teflon. Journal of Colloid and Interface Science, 1996, 179, 57-65.	5.0	46

#	Article	IF	Citations
487	The role of physicochemical and structural surface properties in co-adhesion of microbial pairs in a parallel-plate flow chamber. Colloids and Surfaces B: Biointerfaces, 1996, 7, 101-112.	2.5	17
488	A comparison of the surface activity of the fungal hydrophobin SC3p with those of other proteins. Biophysical Chemistry, 1996, 57, 253-260.	1.5	60
489	Grouping of streptococcus mitis strains grown on different growth media by FT-IR. Infrared Physics and Technology, 1996, 37, 561-564.	1.3	38
490	Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids and Surfaces B: Biointerfaces, 1996, 8, 51-61.	2.5	89
491	pH dependence of the kinetics of interfacial tension changes during protein adsorption from sessile droplets on FEP-Teflon. Colloid and Polymer Science, 1996, 274, 27-33.	1.0	15
492	UropathogenicEscherichia coliadhere to urinary catheters without using fimbriae. FEMS Immunology and Medical Microbiology, 1996, 16, 159-162.	2.7	18
493	A comparison of the detachment of an adhering oral streptococcal strain stimulated by mouthrinses and a preâ€brushing rinse. Biofouling, 1996, 9, 327-339.	0.8	16
494	Co-adhesion of Oral Microbial Pairs under Flow in the Presence of Saliva and Lactose. Journal of Dental Research, 1996, 75, 809-815.	2.5	47
495	Hydrophobic recovery of repeatedly plasma-treated silicone rubber. Part 2. A comparison of the hydrophobic recovery in air, water, or liquid nitrogen. Journal of Adhesion Science and Technology, 1996, 10, 351-359.	1.4	64
496	Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Applied and Environmental Microbiology, 1996, 62, 1958-1963.	1.4	276
497	Deposition Efficiency and Reversibility of Bacterial Adhesion under Flow. Journal of Colloid and Interface Science, 1995, 176, 329-341.	5.0	204
498	Adhesion and spreading of human skin fibroblasts on physicochemically characterized gradient surfaces. Journal of Biomedical Materials Research Part B, 1995, 29, 1415-1423.	3.0	114
499	Surface properties of catheters, stents and bacteria associated with urinary tract infections. Surface Science Reports, 1995, 21, 251-273.	3.8	35
500	Interfacial self-assembly of a Schizophyllum commune hydrophobin into an insoluble amphipathic protein membrane depends on surface hydrophobicity. Colloids and Surfaces B: Biointerfaces, 1995, 5, 189-195.	2.5	74
501	Physicochemical aspects of microbial adhesion $\hat{a}\in$ " Influence of antibody adsorption on the deposition of Streptococcus sobrinus in a parallel-plate flow chamber. Colloids and Surfaces B: Biointerfaces, 1995, 4, 401-410.	2.5	6
502	Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1. Zeta potentials of hydrocarbon droplets. Colloids and Surfaces B: Biointerfaces, 1995, 5, 111-116.	2.5	103
503	Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 2. Adhesion mechanisms. Colloids and Surfaces B: Biointerfaces, 1995, 5, 117-126.	2.5	90
504	Hydrophobic recovery of repeatedly plasma-treated silicone rubber. Part 1. Storage in air. Journal of Adhesion Science and Technology, 1995, 9, 1263-1278.	1.4	82

#	Article	IF	Citations
505	A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber. II: Analysis of the kinetics of co-adhesion. Journal of Microbiological Methods, 1995, 23, 169-182.	0.7	33
506	Effect of polyclonal and monoclonal antibodies on surface properties of Streptococcus sobrinus. Infection and Immunity, 1995, 63, 1698-1702.	1.0	23
507	The Influence of Surface-Free Energy on Supra- and Subgingival Plaque Microbiology. An In Vivo Study on Implants. Journal of Periodontology, 1994, 65, 162-167.	1.7	64
508	Physicochemical characteristics of two pairs of coagulase-negative staphylococcal isolates with different plasmid profiles. Colloids and Surfaces B: Biointerfaces, 1994, 2, 73-82.	2.5	18
509	Mikrobielle Werkstoffzerstörung - SchadensfÇe und Gegenmaßnahmen fýr Kunst- und Naturstoffe. Mikrobiologische Zerstörung von Silikon-Elastomeren. Materials and Corrosion - Werkstoffe Und Korrosion, 1994, 45, 170-171.	0.8	1
510	Physicochemical Aspects of Deposition of Streptococcus thermophilus B to Hydrophobic and Hydrophilic Substrata in a Parallel Plate Flow Chamber. Journal of Colloid and Interface Science, 1994, 164, 355-363.	5.0	44
511	Adhesion of lactobacilli to urinary catheters and diapers: Effect of surface properties. Journal of Biomedical Materials Research Part B, 1994, 28, 731-734.	3.0	22
512	Clinical relevance of the influence of surface free energy and roughness on the supragingival and subgingival plaque formation in man. Colloids and Surfaces B: Biointerfaces, 1994, 2, 25-31.	2.5	13
513	In Vitro ingrowth of yeasts into medical grade silicone rubber. International Biodeterioration and Biodegradation, 1994, 33, 383-390.	1.9	23
514	Fluid shear induced endothelial cell detachment from glass - influence of adhesion time and shear stress. Medical Engineering and Physics, 1994, 16, 506-512.	0.8	43
515	Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility. Journal of Applied Bacteriology, 1994, 76, 521-528.	1.1	49
516	Quantitation of microbial cell surface heterogeneity by microelectrophoresis and electron microscopy — Application to lactobacilli after serial passaging. Journal of Microbiological Methods, 1994, 19, 269-277.	0.7	10
517	A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber: basic principles of the analysis. Journal of Microbiological Methods, 1994, 20, 289-305.	0.7	56
518	A Comparison of Different Approaches To Calculate Surface Free Energies of Protein-Coated Substrata from Measured Contact Angles of Liquids. Langmuir, 1994, 10, 1314-1318.	1.6	19
519	Displacement of Enterococcus faecalis from hydrophobic and hydrophilic substrata by Lactobacillus and Streptococcus spp. as studied in a parallel plate flow chamber. Applied and Environmental Microbiology, 1994, 60, 1867-1874.	1.4	41
520	Interfacial Free Energies in Protein Solution Droplets on FEP-Teflon by Axisymmetric Drop Shape Analysis by Profileâ€"IgG versus BSA. Journal of Colloid and Interface Science, 1993, 156, 129-136.	5.0	26
521	Physicochemical Surface Characteristics of Urogenital and Poultry Lactobacilli. Journal of Colloid and Interface Science, 1993, 156, 319-324.	5.0	46
522	Biodeterioration of medical-grade silicone rubber used for voice prostheses: a SEM study. Biomaterials, 1993, 14, 459-464.	5.7	110

#	Article	IF	Citations
523	Adsorption of ciprofloxacin to urinary catheters and effect on subsequent bacterial adhesion and survival. Colloids and Surfaces B: Biointerfaces, 1993, 1, 9-16.	2.5	27
524	Grouping of oral streptococcal species using fourier-transform infrared spectroscopy in comparison with classical microbiological identification. Archives of Oral Biology, 1993, 38, 1013-1019.	0.8	45
525	Microbial cell surface hydrophobicity The involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). Journal of Microbiological Methods, 1993, 18, 61-68.	0.7	118
526	An in vivo Study of the Influence of the Surface Roughness of Implants on the Microbiology of Supra- and Subgingival Plaque. Journal of Dental Research, 1993, 72, 1304-1309.	2.5	349
527	Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci. Applied and Environmental Microbiology, 1993, 59, 4305-4312.	1.4	92
528	Heterogeneity of Surfaces of Subgingival Bacteria as Detected by Zeta Potential Measurements. Journal of Dental Research, 1992, 71, 1803-1806.	2.5	36
529	Adhesion of Mutans Streptococci to Glass With and Without a Salivary Coating as Studied in a Parallel-plate Flow Chamber. Journal of Dental Research, 1992, 71, 491-500.	2.5	57
530	Structural and physicochemical surface properties of <i>Serratia marcescens</i> strains. Canadian Journal of Microbiology, 1992, 38, 1033-1041.	0.8	18
531	INFLUENCE OF ELECTROSTATIC INTERACTIONS ON THE DEPOSITION EFFICIENCIES OF COAGULASE-NEGATIVE STAPHYLOCOCCI TO COLLECTOR SURFACES IN A PARALLEL PLATE FLOW CHAMBER. Journal of Dispersion Science and Technology, 1992, 13, 447-458.	1.3	12
532	Preparation and characterization of superhydrophobic FEP-Teflon surfaces. Journal of Adhesion Science and Technology, 1992, 6, 347-356.	1.4	49
533	In situ enumeration of bacterial adhesion in a parallel plate flow chamber - elimination or in focus flowing bacteria from the analysis. Journal of Microbiological Methods, 1992, 16, 119-124.	0.7	28
534	Correlation between hydrophobicity and resistance to nonoxynol-9 and vancomycin for urogenital isolates of lactobacilli. FEMS Microbiology Letters, 1992, 94, 101-104.	0.7	23
535	Influence of substratum wettability on the strength of adhesion of human fibroblasts. Biomaterials, 1992, 13, 897-904.	5.7	179
536	Importance of surface properties in bacterial adhesion to biomaterials, with particular reference to the urinary tract. International Biodeterioration and Biodegradation, 1992, 30, 105-122.	1.9	21
537	Development and use of a parallel-plate flow chamber for studying cellular adhesion to solid surfaces. Journal of Biomedical Materials Research Part B, 1992, 26, 725-738.	3.0	115
538	Physicochemical and structural investigation of the surfaces of some anaerobic subgingival bacteria. Applied and Environmental Microbiology, 1992, 58, 1326-1334.	1.4	18
539	Comparison of contact angles and adhesion to hexadecane of urogenital, dairy, and poultry lactobacilli: effect of serial culture passages. Applied and Environmental Microbiology, 1992, 58, 1549-1553.	1.4	93
540	Adsorption of salivary mucins onto enamel and artificial solid substrata and its influence on oral streptococcal adhesion. Biofouling, 1991, 3, 199-207.	0.8	14

#	Article	IF	Citations
541	Comparison of the Physicochemical Surface Properties of Streptococcus rattus with Those of Other Mutans Streptococcal Species. Caries Research, 1991, 25, 415-423.	0.9	36
542	Cell-seeding of ligament fibroblasts. A novel technique to create new attachment A pilot study. Journal of Clinical Periodontology, 1991, 18, 196-199.	2.3	40
543	Physicochemical and structural studies onAcinetobacter calcoaceticus RAG-1 and MR-481â€"Two standard strains in hydrophobicity tests. Current Microbiology, 1991, 23, 337-341.	1.0	26
544	Assessment of bacterial biosurfactant production through axisymmetric drop shape analysis by profile. Applied Microbiology and Biotechnology, 1991, 35, 766-770.	1.7	82
545	Aging effects of repeatedly glow-discharged polyethylene: influence on contact angle, infrared absorption, elemental surface composition, and surface topography. Journal of Adhesion Science and Technology, 1991, 5, 757-769.	1.4	36
546	Secretory IgA adsorption and oral streptococcal adhesion to human enamel and artificial solid substrata with various surface free energies. Journal of Biomaterials Science, Polymer Edition, 1991, 2, 239-253.	1.9	15
547	Direct observations of cooperative effects in oral streptococcal adhesion to glass by analysis of the spatial arrangement of adhering bacteria. FEMS Microbiology Letters, 1990, 69, 263-269.	0.7	44
548	A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata. Cell Biophysics, 1990, 17, 93-106.	0.4	96
549	XPS determination of the thickness of adsorbed mouthrinse components on dental enamel. Surface and Interface Analysis, 1990, 15, 344-346.	0.8	14
550	The influence of a salivary coating on the molecular surface composition of oral streptococci as determined by Fourier transform infrared spectroscopy. Infrared Physics, 1990, 30, 143-148.	0.5	6
551	On the difference between water contact angles measured on partly dehydrated and on freeze-dried oral streptococci. Journal of Colloid and Interface Science, 1990, 136, 297-300.	5.0	13
552	An interlaboratory comparison of physico-chemical methods for studying the surface properties of microorganisms $\hat{a} \in \text{``application to Streptococcus thermophilus and Leuconostoc mesenteroides.}$ Journal of Microbiological Methods, 1990, 12, 101-115.	0.7	38
553	Molecular surface characterization of oral streptococci by Fourier transform infrared spectroscopy. Biochimica Et Biophysica Acta - General Subjects, 1989, 991, 395-398.	1.1	52
554	A comparison between the elemental surface compositions and electrokinetic properties of oral streptococci with and without adsorbed salivary constituents. Archives of Oral Biology, 1989, 34, 889-894.	0.8	31
555	Physicochemical surface properties of nonencapsulated and encapsulated coagulase-negative staphylococci. Applied and Environmental Microbiology, 1989, 55, 2806-2814.	1.4	52
556	On a relation between interfacial free energy-dependent and noninterfacial free energy-dependent adherence of oral streptococci to solid substrata. Current Microbiology, 1988, 16, 311-313.	1.0	55
557	Properties of oral streptococci relevant for adherence: Zeta potential, surface free energy and elemental composition. Colloids and Surfaces, 1988, 32, 297-305.	0.9	65
558	Surface properties of Streptococcus salivarius HB and nonfibrillar mutants: measurement of zeta potential and elemental composition with X-ray photoelectron spectroscopy. Journal of Bacteriology, 1988, 170, 2462-2466.	1.0	87

#	Article	IF	CITATIONS
559	Comparison between the adhesion to solid substrata of Streptococcus mitis and that of polystyrene particles. Applied and Environmental Microbiology, 1988, 54, 837-838.	1.4	20
560	A comparison of various methods to determine hydrophobic properties of streptococcal cell surfaces. Journal of Microbiological Methods, 1987, 6, 277-287.	0.7	106
561	Physico-chemical surface characteristics and adhesive properties of strains with defined cell surface structures. FEMS Microbiology Letters, 1987, 40, 15-19.	0.7	50
562	The Surface Free Energy of Oral Streptococci after being Coated with Saliva and its Relation to Adhesion in the Mouth. Journal of Dental Research, 1985, 64, 1204-1210.	2.5	61
563	Surface free energies of oral streptococci. FEMS Microbiology Letters, 1984, 25, 279-282.	0.7	15
564	Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Applied and Environmental Microbiology, 1984, 48, 980-983.	1.4	657
565	The Use of Positively Charged or Low Surface Free Energy Coatings versus Polymer Brushes in Controlling Biofilm Formation., 0,, 138-144.		54
566	Uropathogenic Escherichia coli adhere to urinary catheters without using fimbriae. , 0, .		1
567	A constant depth film fermenter to grow microbial biofilms. Protocol Exchange, 0, , .	0.3	8