Esraa M Bakhsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140692/publications.pdf

Version: 2024-02-01

72 papers 1,507 citations

331538
21
h-index

36 g-index

72 all docs 72 docs citations

times ranked

72

956 citing authors

#	Article	lF	CITATIONS
1	Design of simple and efficient metal nanoparticles templated on ZnO-chitosan coated textile cotton towards the catalytic reduction of organic pollutants. Journal of Industrial Textiles, 2022, 51, 1703S-1728S.	1.1	17
2	Nigella sativa L. seeds extract assisted synthesis of silver nanoparticles and their antibacterial and catalytic performance. Applied Nanoscience (Switzerland), 2022, 12, 3185-3196.	1.6	2
3	Alginate biopolymer as a reactor container for copper oxide-tin oxide: Efficient nanocatalyst for reduction of different pollutants. Chemosphere, 2022, 291, 132811.	4.2	7
4	Metal nanoparticles supported chitosan coated carboxymethyl cellulose beads as a catalyst for the selective removal of 4-nitrophenol. Chemosphere, 2022, 291, 133010.	4.2	12
5	Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst. Journal of Materials Science: Materials in Electronics, 2022, 33, 4255-4267.	1.1	12
6	Copper Oxide-Antimony Oxide Entrapped Alginate Hydrogel as Efficient Catalyst for Selective Reduction of 2-Nitrophenol. Polymers, 2022, 14, 458.	2.0	8
7	Preparation, Characterization, and Biological Features of Cactus Coated Bacterial Cellulose Hydrogels. Gels, 2022, 8, 88.	2.1	3
8	Ultraviolet and Infrared Irradiations Sensing of Gel-Orange Dye Composite-Based Flexible Electrochemical Cells. Gels, 2022, 8, 83.	2.1	1
9	Effect of Humidity and Temperature on the Impedances and Voltage of Al/Gr-Jelly/Cu-Rubber Composite-Based Flexible Electrochemical Sensors. Gels, 2022, 8, 73.	2.1	3
10	Clove oil-mediated green synthesis of silver-doped cadmium sulfide and their photocatalytic degradation activity. Inorganic Chemistry Communication, 2022, 138, 109256.	1.8	2
11	Kinetics and thermodynamic study of Calligonum polygonoides pyrolysis using model-free methods. Chemical Engineering Research and Design, 2022, 160, 130-138.	2.7	10
12	Niâ€"Al-layered double-hydroxide photocatalyst for the visible light-assisted photodegradation of organic dye pollutants. Applied Nanoscience (Switzerland), 2022, 12, 3597-3606.	1.6	3
13	Chitosan@Carboxymethylcellulose/CuO-Co2O3 Nanoadsorbent as a Super Catalyst for the Removal of Water Pollutants. Gels, 2022, 8, 91.	2.1	6
14	Synthesis of Activated Carbon from Trachycarpus fortunei Seeds for the Removal of Cationic and Anionic Dyes. Materials, 2022, 15, 1986.	1.3	13
15	Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels, 2022, 8, 205.	2.1	19
16	Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels, 2022, 8, 167.	2.1	75
17	Nickel oxide and carboxymethyl cellulose composite beads as catalyst for the pollutant degradation. Applied Nanoscience (Switzerland), 2022, 12, 3585-3595.	1.6	6
18	Efficient fabrication, antibacterial and catalytic performance of Ag-NiO loaded bacterial cellulose paper. International Journal of Biological Macromolecules, 2022, 206, 917-926.	3.6	5

#	Article	IF	Citations
19	Highly efficient and recoverable Ag-Cu bimetallic catalyst supported on taro-rhizomeÂpowder applied for nitroarenes and dyes reduction. Journal of Materials Research and Technology, 2022, 18, 769-787.	2.6	16
20	Nanoarchitectured Cu based catalysts supported on alginate/glycyl leucine hybrid beads for tainted water treatment. International Journal of Biological Macromolecules, 2022, 208, 56-69.	3.6	2
21	Selective adsorption of iron(III) ions based on nickel(II) oxide-copper(II) oxide nanoparticles. Current Analytical Chemistry, 2022, 18 , .	0.6	0
22	Metallic nanoparticles decorated chitosan hydrogel wrapped pencil graphite: Effective catalyst for reduction of water pollutants and hydrogen production. Surfaces and Interfaces, 2022, 31, 102004.	1.5	5
23	Enhanced catalytic reduction/degradation of organic pollutants and antimicrobial activity with metallic nanoparticles immobilized on copolymer modified with NaY zeolite films. Journal of Molecular Liquids, 2022, 359, 119246.	2.3	11
24	Adsorption efficiency of date palm based activated carbon-alginate membrane for methylene blue. Chemosphere, 2022, 302, 134793.	4.2	51
25	Chitosan hydrogel wrapped bimetallic nanoparticles based efficient catalysts for the catalytic removal of organic pollutants and hydrogen production. Applied Organometallic Chemistry, 2022, 36,	1.7	11
26	Chitosan coated NiAl layered double hydroxide microsphere templated zero-valent metal NPs for environmental remediation. Journal of Cleaner Production, 2021, 285, 124830.	4.6	44
27	Iron doped nanocomposites based efficient catalyst for hydrogen production and reduction of organic pollutant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125502.	2.3	13
28	Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. International Journal of Biological Macromolecules, 2021, 167, 101-116.	3.6	41
29	Bimetallic cobalt–iron diselenide nanorod modified glassy carbon electrode: an electrochemical sensing platform for the selective detection of isoniazid. RSC Advances, 2021, 11, 12649-12657.	1.7	6
30	Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. Environmental Science and Pollution Research, 2021, 28, 38476-38496.	2.7	11
31	Biomass impregnated zero-valent Ag and Cu supported-catalyst: Evaluation in the reduction of nitrophenol and discoloration of dyes in aqueous medium. Journal of Organometallic Chemistry, 2021, 938, 121756.	0.8	18
32	Synthesis of zero-valent Au nanoparticles on chitosan coated NiAl layered double hydroxide microspheres for the discoloration of dyes in aqueous medium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119370.	2.0	8
33	Effect of short time ball milling on physicochemical and adsorption performance of activated carbon prepared from mangosteen peel waste. Renewable Energy, 2021, 168, 723-733.	4.3	23
34	Zn/Fe nanocomposite based efficient electrochemical sensor for the simultaneous detection of metal ions. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114671.	1.3	17
35	Natural Crude Dye from Cucurbita Pepo Leaves for Dying, Antimicrobial, and Antioxidant Activities. Letters in Organic Chemistry, 2021, 18, 969-976.	0.2	0
36	Photo-degradation, thermodynamic and kinetic study of carcinogenic dyes via zinc oxide/graphene oxide nanocomposites. Journal of Materials Research and Technology, 2021, 15, 3171-3191.	2.6	24

3

#	Article	IF	CITATIONS
37	Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere, 2021, 279, 130545.	4.2	46
38	Design of efficient solar photocatalytic system for hydrogen production and degradation of environmental pollutant. Journal of Materials Research and Technology, 2021, 14, 2497-2512.	2.6	10
39	Modification of cellulose filter paper with bimetal nanoparticles for catalytic reduction of nitroaromatics in water. Cellulose, 2021, 28, 11067.	2.4	4
40	Development of alginate@tin oxide–cobalt oxide nanocomposite based catalyst for the treatment of wastewater. International Journal of Biological Macromolecules, 2021, 187, 386-398.	3.6	22
41	Structural, optical and photocatalytic properties of silver-doped magnesia: computational and experimental study. Journal of Molecular Liquids, 2021, 339, 117176.	2.3	4
42	Sodium alginate nanocomposite based efficient system for the removal of organic and inorganic pollutants from wastewater. International Journal of Biological Macromolecules, 2021, 191, 243-254.	3.6	22
43	Reduction of nitrophenol isomers and degradation of azo dyes through zero-valent Ni nanoparticles anchored on cellulose acetate coated Ce/Zr composite. Journal of Water Process Engineering, 2021, 44, 102383.	2.6	11
44	Phenolic water toxins: redox mechanism and method of their detection in water and wastewater. RSC Advances, 2021, 11, 35783-35795.	1.7	5
45	Alginate/Banana Waste Beads Supported Metal Nanoparticles for Efficient Water Remediation. Polymers, 2021, 13, 4054.	2.0	7
46	Photocatalytic degradation of organic dyes by U3MnO10 nanoparticles under UV and sunlight. Inorganic Chemistry Communication, 2021, 134, 109075.	1.8	7
47	Adsorptive removal of lanthanum based on hydrothermally synthesized iron oxide-titanium oxide nanoparticles. Environmental Science and Pollution Research, 2020, 27, 5408-5417.	2.7	12
48	Lignocellulosic biomass supported metal nanoparticles for the catalytic reduction of organic pollutants. Environmental Science and Pollution Research, 2020, 27, 823-836.	2.7	36
49	Metal nanoparticles decorated sodium alginate‑carbon nitride composite beads as effective catalyst for the reduction of organic pollutants. International Journal of Biological Macromolecules, 2020, 164, 1087-1098.	3.6	49
50	Polymer supported metallic nanoparticles as a solid catalyst for the removal of organic pollutants. Cellulose, 2020, 27, 5907-5921.	2.4	36
51	Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant. International Journal of Biological Macromolecules, 2020, 153, 806-816.	3.6	45
52	A template of cellulose acetate polymer-ZnAl/C layered double hydroxide composite fabricated with Ni NPs: Applications in the hydrogenation of nitrophenols and dyes degradation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118671.	2.0	27
53	Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceramics International, 2020, 46, 19078-19083.	2.3	139
54	Design of chitosan nanocomposite hydrogel for sensitive detection and removal of organic pollutants. International Journal of Biological Macromolecules, 2020, 159, 276-286.	3.6	19

#	Article	IF	Citations
55	Nanostructured Materials and their Potential as Electrochemical Sensors. Current Nanoscience, 2020, 16, 534-543.	0.7	2
56	Removal of hexavalent chromium from aqueous solutions using Ni–SiO\$\$_{2}\$\$ nanomaterials. Bulletin of Materials Science, 2019, 42, 1.	0.8	7
57	Electrochemical detection and catalytic removal of 4-nitrophenol using CeO2-Cu2O and CeO2-Cu2O/CH nanocomposites. Applied Surface Science, 2019, 492, 726-735.	3.1	68
58	Efficient electrochemical detection and extraction of copper ions using ZnSe–CdSe/SiO2 core–shell nanomaterial. Journal of Industrial and Engineering Chemistry, 2019, 73, 118-127.	2.9	36
59	Copper nanoparticles embedded chitosan for efficient detection and reduction of nitroaniline. International Journal of Biological Macromolecules, 2019, 131, 666-675.	3.6	49
60	Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydrate Polymers, 2018, 192, 217-230.	5.1	95
61	Performance of cellulose acetate-ferric oxide nanocomposite supported metal catalysts toward the reduction of environmental pollutants. International Journal of Biological Macromolecules, 2018, 107, 668-677.	3.6	53
62	Cellulose acetate-iron oxide nanocomposites for trace detection of fluorene from water samples by solid-phase extraction technique. Separation Science and Technology, 2018, 53, 887-895.	1.3	10
63	Assessment of cellulose acetate/manganese oxide thin film as adsorbent for selective extraction of flavone. Bulletin of Materials Science, 2018, 41, 1.	0.8	1
64	Cerium oxide‑cadmium oxide nanomaterial as efficient extractant for yttrium ions. Journal of Molecular Liquids, 2018, 269, 252-259.	2.3	21
65	Development of PUâ€₹ZnO solidâ€phase extractor for selective detection of mercury in complex matrices. Polymer Composites, 2017, 38, 2106-2112.	2.3	4
66	Selective adsorption of 4-chlorophenol based on silica-ionic liquid composite developed by sol–gel process. Chemical Engineering Journal, 2017, 326, 794-802.	6.6	21
67	Anti-bacterial PES-cellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol. RSC Advances, 2016, 6, 110077-110090.	1.7	80
68	Exploration of calcium doped zinc oxide nanoparticles as selective adsorbent for extraction of lead ion. Desalination and Water Treatment, 2016, 57, 19311-19320.	1.0	29
69	Poly(propylene carbonate)/exfoliated graphite nanocomposites: Selective adsorbent for the extraction and detection of gold(III). Bulletin of Materials Science, 2015, 38, 327-333.	0.8	11
70	Silica Gel Supported Hydrophobic Ionic Liquid for Selective Extraction and Determination of Coumarin. American Journal of Analytical Chemistry, 2013, 04, 8-16.	0.3	12
71	Polyethersulphone coated Ag-SiO2 nanoparticles: a multifunctional and ultrafiltration membrane with improved performance. , 0, 239, 217-227.		2
72	High effective catalyst based on Ni doped TiO ₂ coated natural cotton fibers for catalytic reduction of organic pollutants. Journal of Natural Fibers, 0, , 1-14.	1.7	0