Susan L Swain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4140402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong influenza-induced T _{FH} generation requires CD4 effectors to recognize antigen locally and receive signals from continuing infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
2	Bona Fide Th17 Cells without Th1 Functional Plasticity Protect against Influenza. Journal of Immunology, 2022, 208, 1998-2007.	0.8	5
3	Durable CD4 T-Cell Memory Generation Depends on Persistence of High Levels of Infection at an Effector Checkpoint that Determines Multiple Fates. Cold Spring Harbor Perspectives in Biology, 2021, 13, a038182.	5.5	8
4	"An Intrinsic Program Determines Key Age-Associated Changes in Adaptive Immunity That Limit Response to Non-Pathogens― Frontiers in Aging, 2021, 2, .	2.6	4
5	Virus-induced natural killer cell lysis of T cell subsets. Virology, 2020, 539, 26-37.	2.4	6
6	Influenza Vaccine–Induced CD4 Effectors Require Antigen Recognition at an Effector Checkpoint to Generate CD4 Lung Memory and Antibody Production. Journal of Immunology, 2020, 205, 2077-2090.	0.8	11
7	CD25-Targeted IL-2 Signals Promote Improved Outcomes of Influenza Infection and Boost Memory CD4 T Cell Formation. Journal of Immunology, 2020, 204, 3307-3314.	0.8	10
8	Understanding the Heterogeneous Population of Age-Associated B Cells and Their Contributions to Autoimmunity and Immune Response to Pathogens. Critical Reviews in Immunology, 2020, 40, 297-309.	0.5	6
9	Memory CD4 T cell-derived IL-2 synergizes with viral infection to exacerbate lung inflammation. PLoS Pathogens, 2019, 15, e1007989.	4.7	32
10	Original Antigenic Sin: Friend or Foe in Developing a Broadly Cross-Reactive Vaccine to Influenza?. Cell Host and Microbe, 2019, 25, 354-355.	11.0	15
11	Pathogen Recognition by CD4 Effectors Drives Key Effector and Most Memory Cell Generation Against Respiratory Virus. Frontiers in Immunology, 2018, 9, 596.	4.8	13
12	IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo. Journal of Immunology, 2017, 198, 2819-2833.	0.8	50
13	NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. Journal of Immunology, 2017, 198, 1142-1155.	0.8	53
14	The properties of the unique age-associated B cell subset reveal a shift in strategy of immune response with age. Cellular Immunology, 2017, 321, 52-60.	3.0	22
15	T-Cell Immunity to Influenza in Older Adults: A Pathophysiological Framework for Development of More Effective Vaccines. Frontiers in Immunology, 2016, 7, 41.	4.8	124
16	New Insights into the Generation of CD4 Memory May Shape Future Vaccine Strategies for Influenza. Frontiers in Immunology, 2016, 7, 136.	4.8	42
17	PSGL-1 Is an Immune Checkpoint Regulator that Promotes T Cell Exhaustion. Immunity, 2016, 44, 1190-1203.	14.3	116
18	Direct IL-6 Signals Maximize Protective Secondary CD4 T Cell Responses against Influenza. Journal of Immunology, 2016, 197, 3260-3270.	0.8	16

SUSAN L SWAIN

#	Article	IF	CITATIONS
19	Short-Lived Antigen Recognition but Not Viral Infection at a Defined Checkpoint Programs Effector CD4 T Cells To Become Protective Memory. Journal of Immunology, 2016, 197, 3936-3949.	0.8	35
20	IL-2 and IL-6 cooperate to enhance the generation of influenza-specific CD8 T cells responding to live influenza virus in aged mice and humans. Oncotarget, 2016, 7, 39171-39183.	1.8	24
21	CD4 T Cell Immunity to Viral Infection. , 2016, , 291-299.		1
22	IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age. Nature Communications, 2015, 6, 6702.	12.8	79
23	IL-21 Promotes Pulmonary Fibrosis through the Induction of Profibrotic CD8+ T Cells. Journal of Immunology, 2015, 195, 5251-5260.	0.8	40
24	Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during <i>Mycobacterium tuberculosis</i> infection. Journal of Experimental Medicine, 2015, 212, 1449-1463.	8.5	66
25	Graded Levels of IRF4 Regulate CD8+ T Cell Differentiation and Expansion, but Not Attrition, in Response to Acute Virus Infection. Journal of Immunology, 2014, 192, 5881-5893.	0.8	99
26	Intraepithelial T-Cell Cytotoxicity, Induced Bronchus-Associated Lymphoid Tissue, and Proliferation of Pneumocytes in Experimental Mouse Models of Influenza. Viral Immunology, 2014, 27, 484-496.	1.3	12
27	CD4 T cell defects in the aged: Causes, consequences and strategies to circumvent. Experimental Gerontology, 2014, 54, 67-70.	2.8	42
28	Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nature Communications, 2014, 5, 5377.	12.8	118
29	Multiple Redundant Effector Mechanisms of CD8+ T Cells Protect against Influenza Infection. Journal of Immunology, 2013, 190, 296-306.	0.8	83
30	Multipronged <scp>CD</scp> 4 ⁺ T ell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunological Reviews, 2013, 255, 149-164.	6.0	76
31	Immune senescence: new insights into defects but continued mystery of root causes. Current Opinion in Immunology, 2013, 25, 495-497.	5.5	7
32	Memory CD4 T Cell-Mediated Immunity against Influenza A Virus: More than a Little Helpful. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 341-353.	2.3	30
33	Location, Location, Location: The Impact of Migratory Heterogeneity on T Cell Function. Frontiers in Immunology, 2013, 4, 311.	4.8	35
34	Memory CD4 ⁺ T-cell–mediated protection depends on secondary effectors that are distinct from and superior to primary effectors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2551-60.	7.1	73
35	Aged-related shifts in T cell homeostasis lead to intrinsic T cell defects. Seminars in Immunology, 2012, 24, 350-355.	5.6	55
36	Multifunctional CD4 Cells Expressing Gamma Interferon and Perforin Mediate Protection against Lethal Influenza Virus Infection. Journal of Virology, 2012, 86, 6792-6803.	3.4	214

SUSAN L SWAIN

#	Article	IF	CITATIONS
37	Expanding roles for CD4+ T cells in immunity to viruses. Nature Reviews Immunology, 2012, 12, 136-148.	22.7	691
38	Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. Journal of Clinical Investigation, 2012, 122, 2847-2856.	8.2	195
39	Cytotoxic CD4 T Cells in Antiviral Immunity. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	152
40	Control of Innate Immunity by Memory CD4 T Cells. Advances in Experimental Medicine and Biology, 2011, 780, 57-68.	1.6	27
41	Regulation of CD4 ⁺ Tâ€cell contraction during pathogen challenge. Immunological Reviews, 2010, 236, 110-124.	6.0	67
42	Memory CD4+ T cells induce innate responses independently of pathogen. Nature Medicine, 2010, 16, 558-564.	30.7	153
43	Bim Dictates Naive CD4 T Cell Lifespan and the Development of Age-Associated Functional Defects. Journal of Immunology, 2010, 185, 4535-4544.	0.8	51
44	TLR-Activated Dendritic Cells Enhance the Response of Aged Naive CD4 T Cells via an IL-6–Dependent Mechanism. Journal of Immunology, 2010, 185, 6783-6794.	0.8	48
45	Age-associated increase in lifespan of naÃ ⁻ ve CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18333-18338.	7.1	127
46	IL-10 Deficiency Unleashes an Influenza-Specific Th17 Response and Enhances Survival against High-Dose Challenge. Journal of Immunology, 2009, 182, 7353-7363.	0.8	257
47	IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cellular Immunology, 2009, 257, 69-79.	3.0	99
48	Tc17, a Unique Subset of CD8 T Cells That Can Protect against Lethal Influenza Challenge. Journal of Immunology, 2009, 182, 3469-3481.	0.8	315
49	The effector to memory transition of CD4 T cells. Immunologic Research, 2008, 40, 114-127.	2.9	37
50	SAP Enables T Cells to Help B Cells by a Mechanism Distinct from Th Cell Programming or CD40 Ligand Regulation. Journal of Immunology, 2008, 181, 3994-4003.	0.8	37
51	Impact of Post-Thymic Cellular Longevity on the Development of Age-Associated CD4+ T Cell Defects. Journal of Immunology, 2008, 180, 4465-4475.	0.8	30
52	Bone Marrow Precursor Cells from Aged Mice Generate CD4 T Cells That Function Well in Primary and Memory Responses. Journal of Immunology, 2008, 181, 4825-4831.	0.8	42
53	Unique Ability of Activated CD4+ T Cells but Not Rested Effectors to Migrate to Non-lymphoid Sites in the Absence of Inflammation. Journal of Biological Chemistry, 2007, 282, 6106-6115.	3.4	29
54	Accumulation of NFAT mediates IL-2 expression in memory, but not naive, CD4+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7175-7180.	7.1	57

SUSAN L SWAIN

#	Article	IF	CITATIONS
55	Rapid default transition of CD4 T cell effectors to functional memory cells. Journal of Experimental Medicine, 2007, 204, 2199-2211.	8.5	88
56	Priming with Cold-Adapted Influenza A Does Not Prevent Infection but Elicits Long-Lived Protection against Supralethal Challenge with Heterosubtypic Virus. Journal of Immunology, 2007, 178, 1030-1038.	0.8	125
57	IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology, 2007, 8, 369-377.	14.5	1,253
58	Why Aging T Cells Fail: Implications for Vaccination. Immunity, 2006, 24, 663-666.	14.3	161
59	Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine, 2006, 24, 457-467.	3.8	75
60	CD4 + Tâ€cell memory: generation and multiâ€faceted roles for CD4 + T cells in protective immunity to influenza. Immunological Reviews, 2006, 211, 8-22.	6.0	154
61	SAP Is Required for Th Cell Function and for Immunity to Influenza. Journal of Immunology, 2006, 177, 5317-5327.	0.8	67
62	CD4 T Cell-Mediated Protection from Lethal Influenza: Perforin and Antibody-Mediated Mechanisms Give a One-Two Punch. Journal of Immunology, 2006, 177, 2888-2898.	0.8	254
63	Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. Journal of Experimental Medicine, 2005, 202, 697-706.	8.5	226
64	Repeated stimulation of CD4 effector T cells can limit their protective function. Journal of Experimental Medicine, 2005, 201, 1101-1112.	8.5	88
65	Newly generated CD4 T cells in aged animals do not exhibit age-related defects in response to antigen. Journal of Experimental Medicine, 2005, 201, 845-851.	8.5	99
66	Inflammatory Cytokines Overcome Age-Related Defects in CD4 T Cell Responses In Vivo. Journal of Immunology, 2004, 172, 5194-5199.	0.8	165
67	IL-7 Promotes the Transition of CD4 Effectors to Persistent Memory Cells. Journal of Experimental Medicine, 2003, 198, 1807-1815.	8.5	286
68	CD4 T cell memory derived from young naive cells functions well into old age, but memory generated from aged naive cells functions poorly. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15053-15058.	7.1	241
69	CD4 Effector T Cell Subsets in the Response to Influenza. Journal of Experimental Medicine, 2002, 196, 957-968.	8.5	301
70	Effect of age on naive CD4 responses: impact on effector generation and memory development. Seminars in Immunopathology, 2002, 24, 53-60.	4.0	33
71	Two Distinct Stages in the Transition from Naive CD4 T Cells to Effectors, Early Antigen-Dependent and Late Cytokine-Driven Expansion and Differentiation. Journal of Immunology, 2000, 165, 5017-5026.	0.8	132
72	Interleukin 2, but Not Other Common γ Chain–Binding Cytokines, Can Reverse the Defect in Generation of Cd4 Effector T Cells from Naive T Cells of Aged Mice. Journal of Experimental Medicine, 1999, 190, 1013-1024.	8.5	245