
Satoru Arai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolutionary Insights from a Genetically Divergent Hantavirus Harbored by the European Common Mole (Talpa europaea). PLoS ONE, 2009, 4, e6149.	2.5	107
2	Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus). Virology Journal, 2007, 4, 114.	3.4	104
3	Hantaviruses: Rediscovery and new beginnings. Virus Research, 2014, 187, 6-14.	2.2	100
4	Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (<i>Urotrichus) Tj ETQq0 0 0 rgBT /O 105, 16296-16301.</i>	verlock 10 7.1	Tf 50 627 T 95
5	Hantavirus in Northern Short-tailed Shrew, United States. Emerging Infectious Diseases, 2007, 13, 1420-1423.	4.3	87
6	Transfusion-Acquired, Autochthonous Human Babesiosis in Japan: Isolation of <i>Babesia microti</i> -Like Parasites with hu-RBC-SCID Mice. Journal of Clinical Microbiology, 2000, 38, 4511-4516.	3.9	87
7	Newfound Hantavirus in Chinese Mole Shrew, Vietnam. Emerging Infectious Diseases, 2007, 13, 1784-1787.	4.3	86
8	Phylogenetically Distinct Hantaviruses in the Masked Shrew (Sorex cinereus) and Dusky Shrew (Sorex) Tj ETQqO	0 Q rgBT /C 1.4	Dverlock 10⊺ 84
9	Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends in Microbiology, 2014, 22, 473-482.	7.7	75
10	Host switch during evolution of a genetically distinct hantavirus in the American shrew mole (Neurotrichus gibbsii). Virology, 2009, 388, 8-14.	2.4	73
11	Molecular Survey of <i>Babesia microti, Ehrlichia</i> Species and <i>Candidatus</i> Neoehrlichia mikurensis in Wild Rodents from Shimane Prefecture, Japan. Microbiology and Immunology, 2007, 51, 359-367.	1.4	69
12	Human Babesiosis in Japan: Epizootiologic Survey of Rodent Reservoir and Isolation of New Type of Babesia microti -Like Parasite. Journal of Clinical Microbiology, 2001, 39, 4316-4322.	3.9	67
13	Late Onset of Vaccine-associated Measles in an Adult with Severe Clinical Symptoms: AÂCase Report. American Journal of Medicine, 2014, 127, e3-e4.	1.5	58
14	Divergent ancestral lineages of newfound hantaviruses harbored by phylogenetically related crocidurine shrew species in Korea. Virology, 2012, 424, 99-105.	2.4	54

15	Integrating Biodiversity Infrastructure into Pathogen Discovery and Mitigation of Emerging Infectious Diseases. BioScience, 2020, 70, 531-534.	4.9	53
16	Characteristics and Outcomes of Influenza-Associated Encephalopathy Cases Among Children and Adults in Japan, 2010–2015. Clinical Infectious Diseases, 2018, 66, 1831-1837.	5.8	46
17	Genetic diversity and phylogeography of Seewis virus in the Eurasian common shrew in Finland and Hungary. Virology Journal, 2009, 6, 208.	3.4	45

Phylogenetically distinct hantaviruses in the masked shrew (Sorex cinereus) and dusky shrew (Sorex) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

SATORU ARAI

#	Article	IF	CITATIONS
19	Novel Hantavirus in the Flat-Skulled Shrew (Sorex roboratus). Vector-Borne and Zoonotic Diseases, 2010, 10, 593-597.	1.5	44
20	High Incidence of Rickettsiosis Correlated to Prevalence of Rickettsia japonica among Haemaphysalis longicornis Tick. Journal of Veterinary Medical Science, 2011, 73, 507-510.	0.9	42
21	Novel Bat-borne Hantavirus, Vietnam. Emerging Infectious Diseases, 2013, 19, 1159-1161.	4.3	40
22	Establishment of a SCID mouse model having circulating human red blood cells and a possible growth of Plasmodium falciparum in the mouse. Vaccine, 1995, 13, 1389-1392.	3.8	36
23	Phylogenetic analysis of Theileria sp. from sika deer, Cervus nippon, in Japan. Veterinary Parasitology, 2004, 120, 339-345.	1.8	27
24	Molecular Phylogeny of Hantaviruses Harbored by Insectivorous Bats in Côte d'Ivoire and Vietnam. Viruses, 2014, 6, 1897-1910.	3.3	25
25	Genetic Diversity of Artybash Virus in the Laxmann's Shrew (<i>Sorex caecutiens</i>). Vector-Borne and Zoonotic Diseases, 2016, 16, 468-475.	1.5	23
26	A method for rapid and complete substitution of the circulating erythrocytes in SCID mice with bovine erythrocytes and use of the substituted mice for bovine hemoprotozoa infections. Journal of Immunological Methods, 1995, 188, 247-254.	1.4	20
27	Tick fauna associated with sika deer density in the Shimane Peninsula, Honshu, Japan. Medical Entomology and Zoology, 2009, 60, 297-304.	0.1	20
28	Molecular phylogeny of a genetically divergent hantavirus harbored by the Geoffroy's rousette () Tj ETQq0 0 0 Evolution, 2016, 45, 26-32.	rgBT /Overl 2.3	ock 10 Tf 50 3 20
29	Genetic Diversity and Geographic Distribution of Bat-borne Hantaviruses. Current Issues in Molecular Biology, 2020, 39, 1-28.	2.4	20
30	Natural infection with Japanese encephalitis virus among inhabitants of Japan: A nationwide survey of antibodies against nonstructural 1 protein. Vaccine, 2006, 24, 3054-3056.	3.8	19
31	Descriptive epidemiology of varicella based on national surveillance data before and after the introduction of routine varicella vaccination with two doses in Japan, 2000–2017. Vaccine, 2018, 36, 5977-5982.	3.8	19
32	Molecular Phylogeny of Mobatviruses (Hantaviridae) in Myanmar and Vietnam. Viruses, 2019, 11, 228.	3.3	19
33	Ongoing increase in measles cases following importations, Japan, March 2014: times of challenge and opportunity. Western Pacific Surveillance and Response Journal: WPSAR, 2014, 5, 31-33.	0.6	19
34	Novel serological tools for detection of Thottapalayam virus, a Soricomorpha-borne hantavirus. Archives of Virology, 2012, 157, 2179-2187.	2.1	17
35	Exposure to H1 genotype measles virus at an international airport in Japan on 31 July 2016 results in a measles outbreak. Western Pacific Surveillance and Response Journal: WPSAR, 2017, 8, 37-39.	0.6	16
36	Babesia canis infection in canine-red blood cell-substituted SCID mice. International Journal for Parasitology, 1998, 28, 1429-1435.	3.1	15

SATORU ARAI

#	Article	IF	CITATIONS
37	Variation in the Coat-Color-Controlling Genes,Mc1randAsip, in the House MouseMus musculusfrom Madagascar. Mammal Study, 2016, 41, 131-140.	0.6	14
38	Seroprevalence of antibodies to pandemic (H1N1) 2009 influenza virus among health care workers in two general hospitals after first outbreak in Kobe, Japan. Journal of Infection, 2011, 63, 281-287.	3.3	12
39	Intraspecific Phylogeny of the House Shrews, <i>Suncus murinus-S. montanus</i> Species Complex, Based on the Mitochondrial Cytochrome <i>b</i> Gene. Mammal Study, 2016, 41, 229-238.	0.6	12
40	Comparative Chromosomal Studies in <i>Rhinolophus formosae</i> and <i>R. luctus</i> from China and Vietnam: Elevation of <i>R. l. lanosus</i> to Species Rank. Acta Chiropterologica, 2017, 19, 41-50.	0.6	12
41	Immune thrombocytopenic purpura risk by live, inactivated and simultaneous vaccinations among Japanese adults, children and infants: a matched case–control study. International Journal of Hematology, 2020, 112, 105-114.	1.6	12
42	Description of a New Species of the Genus <i>Aselliscus</i> (Chiroptera, Hipposideridae) from Vietnam. Acta Chiropterologica, 2015, 17, 233-254.	0.6	11
43	Antigenic and Genetic Diversities of Babesia ovata in Persistently Infected Cattle Journal of Veterinary Medical Science, 1998, 60, 1321-1327.	0.9	10
44	Retrospective Seroepidemiological Survey for Human Babesiosis in an Area in Japan Where a Tick-Borne Disease is Endemic Journal of Veterinary Medical Science, 2003, 65, 335-340.	0.9	10
45	Genetic variants of Cao Bang hantavirus in the Chinese mole shrew (Anourosorex squamipes) and Taiwanese mole shrew (Anourosorex yamashinai). Infection, Genetics and Evolution, 2016, 40, 113-118.	2.3	10
46	Clinical characteristics of redback spider bites. Journal of Intensive Care, 2014, 2, 62.	2.9	9
47	Integrative taxonomy of the <i>Rhinolophus macrotis</i> complex (Chiroptera, Rhinolophidae) in Vietnam and nearby regions. Journal of Zoological Systematics and Evolutionary Research, 2017, 55, 177-198.	1.4	9
48	Polio vaccination coverage and seroprevalence of poliovirus antibodies after the introduction of inactivated poliovirus vaccines for routine immunization in Japan. Vaccine, 2019, 37, 1964-1971.	3.8	8
49	Molecular Phylogenetic Analysis ofOrientia tsutsugamushiBased on thegroESandgroELGenes. Vector-Borne and Zoonotic Diseases, 2013, 13, 825-829.	1.5	7
50	Äakrông virus, a novel mobatvirus (Hantaviridae) harbored by the Stoliczka's Asian trident bat (Aselliscus stoliczkanus) in Vietnam. Scientific Reports, 2019, 9, 10239.	3.3	7
51	Academ Virus, a Novel Hantavirus in the Siberian Mole (Talpa altaica) from Russia. Viruses, 2022, 14, 309.	3.3	7
52	Reassortment Between Divergent Strains of Camp Ripley Virus (Hantaviridae) in the Northern Short-Tailed Shrew (Blarina brevicauda). Frontiers in Cellular and Infection Microbiology, 2020, 10, 460.	3.9	6
53	Preparation of Antibodies Directed to the Babesia ovata- or Theileria sergenti-parasitized Erythrocytes Journal of Veterinary Medical Science, 1999, 61, 73-76.	0.9	5
54	Genetic Diversity and Phylogeography of Thottapalayam thottimvirus (Hantaviridae) in Asian House Shrew (Suncus murinus) in Eurasia. Frontiers in Cellular and Infection Microbiology, 2020, 10, 438.	3.9	5

SATORU ARAI

#	Article	IF	CITATIONS
55	Geographic Distribution and Phylogeny of Soricine Shrew-Borne Seewis Virus and Altai Virus in Russia. Viruses, 2021, 13, 1286.	3.3	5
56	Candida guilliermondii Infection in SCID Mice in Association with the Acceleration of the Elimination of Transfused Human Red Blood Cells Experimental Animals, 1998, 47, 69-73.	1.1	4
57	Serological methods for detection of infection with shrew-borne hantaviruses: Thottapalayam, Seewis, Altai, and Asama viruses. Archives of Virology, 2021, 166, 275-280.	2.1	4
58	Late Quaternary Environmental and Human Impacts on the Mitochondrial DNA Diversity of Four Commensal Rodents in Myanmar. Journal of Mammalian Evolution, 2021, 28, 497-509.	1.8	4
59	First Record of the Genus Plecotus from Southeast Asia with Notes on the Taxonomy, Karyology and Echolocation Call of P. homochrous from Vietnam. Acta Chiropterologica, 2020, 22, 57.	0.6	4
60	Rodent-Borne Orthohantaviruses in Vietnam, Madagascar and Japan. Viruses, 2021, 13, 1343.	3.3	3
61	Epidemiological Study of Tsutsugamushi Disease in Shimane Prefecture, Japan. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2012, 65, 535-541.	0.1	3
62	Babesia rodhaini: The protective effect of pyruvate kinase deficiency in mice. Experimental Parasitology, 2008, 120, 290-294.	1.2	2
63	Venom and Antivenom of the Redback Spider (<i>Latrodectus hasseltii</i>) in Japan. Part II. Experimental Production of Equine Antivenom against the Redback Spider. Japanese Journal of Infectious Diseases, 2017, 70, 635-641.	1.2	2
64	Species and genetic diversity of Bandicota (Murinae, Rodentia) from Myanmar based on mitochondrial and nuclear gene sequences. Mammal Research, 2020, 65, 493-502.	1.3	2
65	Integrative taxonomy and biogeography of Asian yellow house bats (Vespertilionidae: Scotophilus) in the Indomalayan Region. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 772-795.	1.4	2
66	Rediscovery of Van Hasselt's Mouse-eared Bat Myotis hasseltiiÂ(Temminck, 1840) and its first genetic data from Hanoi, northern Vietnam. Journal of Threatened Taxa, 2019, 11, 13915-13919.	0.3	2
67	Short-term Prediction of the Incidence of Congenital Rubella Syndrome. PLOS Currents, 2014, 6, .	1.4	2
68	Erratum to "Host switch during evolution of a genetically distinct hantavirus in the American shrew mole (Neurotrichus gibbsii)―[Virology 388 (2009) 8–14]. Virology, 2009, 391, 148.	2.4	1
69	Expanding distributions of red back spiders and bites in Japan from 2011 to 2013. Medical Entomology and Zoology, 2016, 67, 219-221.	0.1	1
70	Phylogeography of the Japanese White-Toothed Shrew (Eulipotyphla: Soricidae): A Clear Division of Haplogroups between Eastern and Western Japan and their Recent Introduction to Some Regions. Mammal Study, 2018, 43, 245.	0.6	1
71	Comparison of <i>Haemophilus influenzae</i> Seroprevalence in Serum Samples Collected from 0- to 5-Year-Old Japanese Children in 1980, 1995, 2010, and 2012. Japanese Journal of Infectious Diseases, 2020, 73, 51-54.	1.2	1
72	Preclusive Effects of Rabies Immunization for Dogs. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2007, 60, 377-382.	0.1	0