
Edwin K Silverman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4139238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 2021, 590, 290-299.	13.7	1,069
2	Genetic Epidemiology of COPD (COPDGene) Study Design. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 7, 32-43.	0.7	1,007
3	Characterisation of COPD heterogeneity in the ECLIPSE cohort. Respiratory Research, 2010, 11, 122.	1.4	952
4	Chronic Obstructive Pulmonary Disease Phenotypes. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 598-604.	2.5	898
5	Changes in Forced Expiratory Volume in 1 Second over Time in COPD. New England Journal of Medicine, 2011, 365, 1184-1192.	13.9	811
6	An Official American Thoracic Society Public Policy Statement: Novel Risk Factors and the Global Burden of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 693-718.	2.5	760
7	A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci. PLoS Genetics, 2009, 5, e1000421.	1.5	656
8	Persistent Systemic Inflammation is Associated with Poor Clinical Outcomes in COPD: A Novel Phenotype. PLoS ONE, 2012, 7, e37483.	1.1	633
9	Lung Volumes and Emphysema in Smokers with Interstitial Lung Abnormalities. New England Journal of Medicine, 2011, 364, 897-906.	13.9	468
10	Chronic obstructive pulmonary disease. Nature Reviews Disease Primers, 2015, 1, 15076.	18.1	444
11	CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society. Radiology, 2015, 277, 192-205.	3.6	423
12	Pulmonary Arterial Enlargement and Acute Exacerbations of COPD. New England Journal of Medicine, 2012, 367, 913-921.	13.9	397
13	Family-based tests for associating haplotypes with general phenotype data: Application to asthma genetics. Genetic Epidemiology, 2004, 26, 61-69.	0.6	395
14	Alpha ₁ -Antitrypsin Deficiency. New England Journal of Medicine, 2009, 360, 2749-2757.	13.9	377
15	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	3.4	376
16	Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature, 2020, 586, 763-768.	13.7	376
17	The clinical features of the overlap between COPD and asthma. Respiratory Research, 2011, 12, 127.	1.4	362
18	Clinical and Radiologic Disease in Smokers With Normal Spirometry. JAMA Internal Medicine, 2015, 175, 1539.	2.6	360

#	Article	IF	CITATIONS
19	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	9.4	350
20	Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nature Genetics, 2010, 42, 200-202.	9.4	348
21	Association Between Interstitial Lung Abnormalities and All-Cause Mortality. JAMA - Journal of the American Medical Association, 2016, 315, 672.	3.8	333
22	<i>MMP12,</i> Lung Function, and COPD in High-Risk Populations. New England Journal of Medicine, 2009, 361, 2599-2608.	13.9	315
23	Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nature Genetics, 2017, 49, 426-432.	9.4	306
24	A Genome-Wide Association Study of Pulmonary Function Measures in the Framingham Heart Study. PLoS Genetics, 2009, 5, e1000429.	1.5	292
25	Association between Functional Small Airway Disease and FEV ₁ Decline in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 178-184.	2.5	292
26	Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. Lancet Respiratory Medicine,the, 2014, 2, 214-225.	5.2	291
27	The Chronic Bronchitic Phenotype of COPD. Chest, 2011, 140, 626-633.	0.4	280
28	Airway Wall Thickening and Emphysema Show Independent Familial Aggregation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 500-505.	2.5	268
29	PBAT: Tools for Family-Based Association Studies. American Journal of Human Genetics, 2004, 74, 367-369.	2.6	262
30	Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.	9.4	257
31	Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 2019, 51, 494-505.	9.4	257
32	The clinical and genetic features of COPD-asthma overlap syndrome. European Respiratory Journal, 2014, 44, 341-350.	3.1	249
33	The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respiratory Medicine,the, 2013, 1, 129-136.	5.2	224
34	A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Human Molecular Genetics, 2012, 21, 947-957.	1.4	216
35	Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice. Nature Medicine, 2016, 22, 163-174.	15.2	206
36	The transforming growth factor-Â1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Human Molecular Genetics, 2004, 13, 1649-1656.	1.4	203

#	Article	IF	CITATIONS
37	Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genetics, 2019, 15, e1008500.	1.5	203
38	Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respiratory Research, 2014, 15, 89.	1.4	196
39	Attempted Replication of Reported Chronic Obstructive Pulmonary Disease Candidate Gene Associations. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 71-78.	1.4	185
40	Alpha-1-Antitrypsin Deficiency: High Prevalence in the St. Louis Area Determined by Direct Population Screening. The American Review of Respiratory Disease, 1989, 140, 961-966.	2.9	176
41	Early-Onset Chronic Obstructive Pulmonary Disease Is Associated with Female Sex, Maternal Factors, and African American Race in the COPDGene Study. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 414-420.	2.5	176
42	Genomewide Linkage Analysis of Quantitative Spirometric Phenotypes in Severe Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Human Genetics, 2002, 70, 1229-1239.	2.6	168
43	The SERPINE2 Gene Is Associated with Chronic Obstructive Pulmonary Disease. American Journal of Human Genetics, 2006, 78, 253-264.	2.6	167
44	Genome-Wide Association Studies Identify <i>CHRNA5/3</i> and <i>HTR4</i> in the Development of Airflow Obstruction. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 622-632.	2.5	164
45	A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. Human Molecular Genetics, 2015, 24, 3005-3020.	1.4	162
46	Clarification of the Risk of Chronic Obstructive Pulmonary Disease in α ₁ -Antitrypsin Deficiency PiMZ Heterozygotes. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 419-427.	2.5	156
47	Variability of Pulmonary Function in Alpha-1-Antitrypsin Deficiency: Clinical Correlates. Annals of Internal Medicine, 1989, 111, 982.	2.0	152
48	Telomerase mutations in smokers with severe emphysema. Journal of Clinical Investigation, 2015, 125, 563-570.	3.9	152
49	Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax, 2014, 69, 718-723.	2.7	151
50	Case-Control Association Studies for the Genetics of Complex Respiratory Diseases. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 645-648.	1.4	144
51	Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. JAMA - Journal of the American Medical Association, 2018, 320, 2354.	3.8	144
52	Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Human Molecular Genetics, 2012, 21, 1325-1335.	1.4	143
53	The Undiagnosed Diseases Network: Accelerating Discovery about Health and Disease. American Journal of Human Genetics, 2017, 100, 185-192.	2.6	142
54	Integration of Genomic and Genetic Approaches Implicates IREB2 as a COPD Susceptibility Gene. American Journal of Human Genetics, 2009, 85, 493-502.	2.6	139

#	Article	IF	CITATIONS
55	Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2018, 141, 2037-2047.e10.	1.5	138
56	CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study. Radiology, 2018, 288, 859-866.	3.6	138
57	Genetic Determinants of Emphysema Distribution in the National Emphysema Treatment Trial. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 42-48.	2.5	136
58	Longitudinal Phenotypes and Mortality in Preserved Ratio Impaired Spirometry in the COPDGene Study. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1397-1405.	2.5	132
59	Clinical and Radiographic Predictors of GOLD–Unclassified Smokers in the COPDGene Study. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 57-63.	2.5	131
60	PRIMUS: Rapid Reconstruction of Pedigrees from Genome-wide Estimates of Identity by Descent. American Journal of Human Genetics, 2014, 95, 553-564.	2.6	129
61	Loci Identified by Genome-wide Association Studies Influence Different Disease-related Phenotypes in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1498-1505.	2.5	128
62	Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. Thorax, 2014, 69, 416-423.	2.7	128
63	A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 559-569.	2.5	128
64	Molecular networks in Network Medicine: Development and applications. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1489.	6.6	128
65	Lessons from ECLIPSE: a review of COPD biomarkers. Thorax, 2014, 69, 666-672.	2.7	125
66	TheSERPINE2Gene Is Associated with Chronic Obstructive Pulmonary Disease in Two Large Populations. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 167-173.	2.5	124
67	Quantitative Computed Tomography of the Lungs and Airways in Healthy Nonsmoking Adults. Investigative Radiology, 2012, 47, 596-602.	3.5	121
68	Heritability of Chronic Obstructive Pulmonary Disease and Related Phenotypes in Smokers. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 941-947.	2.5	121
69	Family-based association analysis of β2-adrenergic receptor polymorphisms in the childhood asthma management program. Journal of Allergy and Clinical Immunology, 2003, 112, 870-876.	1.5	119
70	A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genetics, 2015, 16, 138.	2.7	119
71	The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Human Molecular Genetics, 2010, 19, 526-534.	1.4	118
72	Distinct Quantitative Computed Tomography Emphysema Patterns Are Associated with Physiology and Function in Smokers. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1083-1090.	2.5	118

#	Article	IF	CITATIONS
73	RISK FACTORS FOR THE DEVELOPMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE. Medical Clinics of North America, 1996, 80, 501-522.	1.1	113
74	Genetic Association Analysis of Functional Impairment in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 977-984.	2.5	112
75	COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 384-399.	0.5	112
76	Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. Thorax, 2007, 62, 806-813.	2.7	108
77	Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Human Molecular Genetics, 2002, 11, 623-632.	1.4	106
78	Interstitial Lung Abnormalities and Reduced Exercise Capacity. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 756-762.	2.5	106
79	\hat{I}^2 -Blockers are associated with a reduction in COPD exacerbations. Thorax, 2016, 71, 8-14.	2.7	105
80	Genetics of COPD. Annual Review of Physiology, 2020, 82, 413-431.	5.6	104
81	Genome-wide Association Study Identifies <i>BICD1</i> as a Susceptibility Gene for Emphysema. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 43-49.	2.5	103
82	Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies. American Journal of Human Genetics, 2019, 104, 260-274.	2.6	103
83	A Chronic Obstructive Pulmonary Disease Susceptibility Gene, <i>FAM13A</i> , Regulates Protein Stability of β-Catenin. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 185-197.	2.5	101
84	Genome-wide linkage analysis of bronchodilator responsiveness and post-bronchodilator spirometric phenotypes in chronic obstructive pulmonary disease. Human Molecular Genetics, 2003, 12, 1199-1210.	1.4	100
85	Genome-wide association study of smoking behaviours in patients with COPD. Thorax, 2011, 66, 894-902.	2.7	95
86	Molecular Biomarkers for Quantitative and Discrete COPD Phenotypes. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 359-367.	1.4	94
87	Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. Respiratory Research, 2013, 14, 42.	1.4	93
88	Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 199-208.	2.5	90
89	Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology, 2020, 294, 434-444.	3.6	89
90	Interobserver Variability in the Determination of Upper Lobe-Predominant Emphysema. Chest, 2007, 131, 424-431.	0.4	88

#	Article	IF	CITATIONS
91	Sex Differences in Emphysema and Airway Disease in Smokers. Chest, 2009, 136, 1480-1488.	0.4	88
92	Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD. PLoS Genetics, 2016, 12, e1006011.	1.5	88
93	CT Metrics of Airway Disease and Emphysema in Severe COPD. Chest, 2009, 136, 396-404.	0.4	87
94	The Association of Genome-Wide Significant Spirometric Loci with Chronic Obstructive Pulmonary Disease Susceptibility. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1147-1153.	1.4	87
95	Genome-Wide Study of Percent Emphysema on Computed Tomography in the General Population. The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 408-418.	2.5	87
96	Polymorphisms in Surfactant Protein–D Are Associated with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 316-322.	1.4	83
97	The value of blood cytokines and chemokines in assessing COPD. Respiratory Research, 2017, 18, 180.	1.4	83
98	The genetics of chronic obstructive pulmonary disease. Respiratory Research, 2001, 2, 20.	1.4	82
99	Circulating Soluble Receptor for Advanced Clycation End Products (sRAGE) as a Biomarker of Emphysema and the RAGE Axis in the Lung. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 785-792.	2.5	82
100	A Functional Mutation in the Terminal Exon of Elastin in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 355-362.	1.4	80
101	T-Bet Polymorphisms Are Associated with Asthma and Airway Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 64-70.	2.5	78
102	α; 1 -Antitrypsin Protease Inhibitor MZ Heterozygosity Is Associated With Airflow Obstruction in Two Large Cohorts. Chest, 2010, 138, 1125-1132.	0.4	77
103	Genome-Wide Association Identifies Regulatory Loci Associated with Distinct Local Histogram Emphysema Patterns. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 399-409.	2.5	77
104	Sarcopenic Obesity, Functional Outcomes, and Systemic Inflammation in Patients With Chronic Obstructive PulmonaryÂDisease. Journal of the American Medical Directors Association, 2016, 17, 712-718.	1.2	77
105	Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1402-1413.	2.5	77
106	Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. Scientific Reports, 2017, 7, 44232.	1.6	76
107	<i>CHRNA3</i> / <i>5</i> , <i>IREB2</i> , and <i>ADCY2</i> Are Associated with Severe Chronic Obstructive Pulmonary Disease in Poland. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 203-208.	1.4	75
108	Network medicine approaches to the genetics of complex diseases. Discovery Medicine, 2012, 14, 143-52.	0.5	75

#	Article	IF	CITATIONS
109	Predictors of Survival in Severe, Early Onset COPD. Chest, 2004, 126, 1443-1451.	0.4	74
110	Progress in Chronic Obstructive Pulmonary Disease Genetics. Proceedings of the American Thoracic Society, 2006, 3, 405-408.	3.5	73
111	DNA methylation profiling in human lung tissue identifies genes associated with COPD. Epigenetics, 2016, 11, 730-739.	1.3	73
112	Electronic Cigarette Use in US Adults at Risk for or with COPD: Analysis from Two Observational Cohorts. Journal of General Internal Medicine, 2017, 32, 1315-1322.	1.3	73
113	<i>IL10</i> Polymorphisms Are Associated with Airflow Obstruction in Severe α ₁ -Antitrypsin Deficiency. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 114-120.	1.4	72
114	Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation. Respiratory Research, 2010, 11, 30.	1.4	72
115	Prediction of Acute Respiratory Disease in Current and Former Smokers With and Without COPD. Chest, 2014, 146, 941-950.	0.4	71
116	Genetic influences on chronic obstructive pulmonary disease – A twin study. Respiratory Medicine, 2010, 104, 1890-1895.	1.3	69
117	Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. Human Genetics, 2013, 132, 431-441.	1.8	69
118	Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. Lancet Respiratory Medicine,the, 2020, 8, 696-708.	5.2	69
119	Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1151-1160.	2.5	68
120	SOX5 Is a Candidate Gene for Chronic Obstructive Pulmonary Disease Susceptibility and Is Necessary for Lung Development. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1482-1489.	2.5	67
121	It's more than low BMI: prevalence of cachexia and associated mortality in COPD. Respiratory Research, 2019, 20, 100.	1.4	66
122	Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 677-690.	2.5	66
123	The clinical impact of non-obstructive chronic bronchitis in current and former smokers. Respiratory Medicine, 2014, 108, 491-499.	1.3	65
124	Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. Thorax, 2017, 72, 998-1006.	2.7	65
125	Machine Learning and Prediction of All-Cause Mortality in COPD. Chest, 2020, 158, 952-964.	0.4	62
126	Genome-wide Linkage of Forced Mid-expiratory Flow in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1294-1301.	2.5	61

#	Article	IF	CITATIONS
127	Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Medicine, 2015, 7, 12.	3.6	61
128	A Family Study of the Variability of Pulmonary Function in $\hat{l}\pm 1$ -Antitrypsin Deficiency: Quantitative Phenotypes. The American Review of Respiratory Disease, 1990, 142, 1015-1021.	2.9	60
129	Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4681-E4687.	3.3	60
130	Alpha-1 Antitrypsin PiMZ Genotype Is Associated with Chronic Obstructive Pulmonary Disease in Two Racial Groups. Annals of the American Thoracic Society, 2017, 14, 1280-1287.	1.5	60
131	Subtyping COPD by Using Visual and Quantitative CT Imaging Features. Chest, 2020, 157, 47-60.	0.4	60
132	Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease. PLoS ONE, 2011, 6, e24395.	1.1	59
133	A Simplified Score to Quantify Comorbidity in COPD. PLoS ONE, 2014, 9, e114438.	1.1	58
134	Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1275-1284.	2.5	56
135	Sex-specific features of emphysema among current and former smokers with COPD. European Respiratory Journal, 2016, 47, 104-112.	3.1	55
136	Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 35-46.	1.4	55
137	The <i>MUC5B</i> promoter polymorphism is associated with specific interstitial lung abnormality subtypes. European Respiratory Journal, 2017, 50, 1700537.	3.1	55
138	Network Medicine. , 2017, , .		55
139	Chest computed tomography-derived lowÂfat-free mass index and mortality inÂCOPD. European Respiratory Journal, 2017, 50, 1701134.	3.1	53
140	Clinical Epidemiology of COPD. Chest, 2019, 156, 228-238.	0.4	53
141	Exome Array Analysis Identifies a Common Variant in <i>IL27</i> Associated with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 48-57.	2.5	52
142	Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. Radiology, 2020, 295, 218-226.	3.6	52
143	Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease. Respiratory Research, 2014, 15, 113.	1.4	51
144	$\hat{I}\pm 1$ -Antitrypsin Augmentation Therapy for PI*MZ Heterozygotes. Chest, 2008, 134, 831-834.	0.4	50

#	Article	IF	CITATIONS
145	Genome-Wide Association Analysis of Body Mass in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 304-310.	1.4	50
146	Association Between Airway Caliber Changes With Lung Inflation and Emphysema Assessed by Volumetric CT Scan in Subjects With COPD. Chest, 2012, 141, 736-744.	0.4	50
147	Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. European Respiratory Journal, 2021, 57, 2003406.	3.1	50
148	Family study of $\hat{I}\pm 1$ -antitrypsin deficiency: Effects of cigarette smoking, measured genotype, and their interaction on pulmonary function and biochemical traits. Genetic Epidemiology, 1992, 9, 317-331.	0.6	49
149	Family History Is a Risk Factor for COPD. Chest, 2011, 140, 343-350.	0.4	49
150	COPD subtypes identified by network-based clustering of blood gene expression. Genomics, 2016, 107, 51-58.	1.3	49
151	Genetics of COPD and Emphysema. Chest, 2009, 136, 859-866.	0.4	48
152	RNA sequencing identifies novel non-coding RNA and exon-specific effects associated with cigarette smoking. BMC Medical Genomics, 2017, 10, 58.	0.7	48
153	Sexually-dimorphic targeting of functionally-related genes in COPD. BMC Systems Biology, 2014, 8, 118.	3.0	47
154	Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells. Genomics, 2013, 101, 263-272.	1.3	46
155	Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1353-1363.	2.5	46
156	Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. JCI Insight, 2018, 3, .	2.3	46
157	On the simultaneous association analysis of large genomic regions: a massive multi-locus association test. Bioinformatics, 2014, 30, 157-164.	1.8	45
158	Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 757-771.	2.5	45
159	Machine Learning Characterization of COPD Subtypes. Chest, 2020, 157, 1147-1157.	0.4	44
160	Opportunities and Challenges in the Genetics of COPD 2010: An International COPD Genetics Conference Report. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 8, 121-135.	0.7	43
161	Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Human Molecular Genetics, 2015, 24, 1200-1210.	1.4	43
162	Utilizing the Jaccard index to reveal population stratification in sequencing data: a simulation study and an application to the 1000 Genomes Project. Bioinformatics, 2016, 32, 1366-1372.	1.8	43

#	Article	IF	CITATIONS
163	RNA-sequencing across three matched tissues reveals shared and tissue-specific gene expression and pathway signatures of COPD. Respiratory Research, 2019, 20, 65.	1.4	43
164	Population sequencing data reveal a compendium of mutational processes in the human germ line. Science, 2021, 373, 1030-1035.	6.0	43
165	Epidemiology, radiology, and genetics of nicotine dependence in COPD. Respiratory Research, 2011, 12, 9.	1.4	42
166	Chronic Obstructive Pulmonary Disease Genetics: A Review of the Past and a Look Into the Future. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2014, 1, 33-46.	0.5	42
167	Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. Lancet Respiratory Medicine,the, 2022, 10, 485-496.	5.2	42
168	A Genome-Wide Association Study of Chronic Obstructive Pulmonary Disease in Hispanics. Annals of the American Thoracic Society, 2015, 12, 340-348.	1.5	41
169	Pectoralis muscle area and mortality in smokers without airflow obstruction. Respiratory Research, 2018, 19, 62.	1.4	41
170	Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. Respiratory Research, 2018, 19, 209.	1.4	41
171	Transforming Growth Factor-β Receptor-3 Is Associated with Pulmonary Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 324-331.	1.4	40
172	Integration of Molecular Interactome and Targeted Interaction Analysis to Identify a COPD Disease Network Module. Scientific Reports, 2018, 8, 14439.	1.6	40
173	The St. George's Respiratory Questionnaire Definition of Chronic Bronchitis May Be aÂBetter Predictor of COPD Exacerbations Compared With the Classic Definition. Chest, 2019, 156, 685-695.	0.4	40
174	A comparison of visual and quantitative methods to identify interstitial lung abnormalities. BMC Pulmonary Medicine, 2015, 15, 134.	0.8	39
175	Identification of Functional Variants in the <i>FAM13A</i> Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 52-61.	2.5	38
176	Transcriptomic Analysis of Lung Tissue from Cigarette Smoke–Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 47-58.	1.4	37
177	Variability of Pulmonary Function in Alpha-1-Antitrypsin Deficiency: Residual Family Resemblance beyond the Effect of the Pi Locus. Human Heredity, 1990, 40, 340-355.	0.4	36
178	Persistent and Newly Developed Chronic Bronchitis Are Associated with Worse Outcomes in Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2016, 13, 1016-1025.	1.5	36
179	Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. Chest, 2018, 153, 65-76.	0.4	36
180	Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. Clinical Epigenetics, 2021, 13, 66.	1.8	36

#	Article	IF	CITATIONS
181	Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Science Advances, 2022, 8, eabl6579.	4.7	36
182	Exacerbations in Chronic Obstructive Pulmonary Disease: Do They Contribute to Disease Progression?. Proceedings of the American Thoracic Society, 2007, 4, 586-590.	3.5	35
183	Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease. Human Genomics, 2018, 12, 1.	1.4	35
184	Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Scientific Reports, 2020, 10, 3361.	1.6	35
185	Systemic Markers of Adaptive and Innate Immunity Are Associated with Chronic Obstructive Pulmonary Disease Severity and Spirometric Disease Progression. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 500-509.	1.4	34
186	National Emphysema Treatment Trial State of the Art: Genetics of Emphysema. Proceedings of the American Thoracic Society, 2008, 5, 486-493.	3.5	33
187	Significant Spirometric Transitions and Preserved Ratio Impaired Spirometry Among Ever Smokers. Chest, 2022, 161, 651-661.	0.4	33
188	Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. Nature Communications, 2020, 11, 5182.	5.8	32
189	Genetic Linkage and Association Analysis of COPD-Related Traits on Chromosome 8p. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2006, 3, 189-194.	0.7	31
190	Peripheral blood gene expression profiles in COPD subjects. Journal of Clinical Bioinformatics, 2011, 1, 12.	1.2	31
191	Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. BMC Systems Biology, 2014, 8, 78.	3.0	31
192	Multistudy Fine Mapping of Chromosome 2q Identifies <i>XRCC5</i> as a Chronic Obstructive Pulmonary Disease Susceptibility Gene. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 605-613.	2.5	29
193	Genome-wide site-specific differential methylation in the blood of individuals with Klinefelter syndrome. Molecular Reproduction and Development, 2015, 82, 377-386.	1.0	29
194	Pulmonary Subtypes Exhibit Differential Global Initiative for Chronic Obstructive Lung Disease Spirometry Stage Progression: The COPDGene® Study. Chronic Obstructive Pulmonary Diseases (Miami,) Tj ET	Qq 0.0 0 r	gBT2Øverlock
195	Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. Cell Genomics, 2022, 2, 100084.	3.0	29
196	Sex-Based Genetic Association Study Identifies <i>CELSR1</i> as a Possible Chronic Obstructive Pulmonary Disease Risk Locus among Women. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 332-341.	1.4	28
197	Influence of <i><scp>SIGLEC9</scp></i> polymorphisms on <scp>COPD</scp> phenotypes including exacerbation frequency. Respirology, 2017, 22, 684-690.	1.3	27
198	Luminal Plugging on Chest CT Scan. Chest, 2020, 158, 121-130.	0.4	27

#	Article	IF	CITATIONS
199	Effect of Emphysema on CT Scan Measures of Airway Dimensions in Smokers. Chest, 2013, 143, 687-693.	0.4	26
200	<i>IREB2</i> and <i>GALC</i> Are Associated with Pulmonary Artery Enlargement in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 365-376.	1.4	26
201	Increasing Generality and Power of Rare-Variant Tests by Utilizing Extended Pedigrees. American Journal of Human Genetics, 2016, 99, 846-859.	2.6	26
202	Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. Respiratory Research, 2021, 22, 127.	1.4	26
203	Markers of disease activity in COPD: an 8-year mortality study in the ECLIPSE cohort. European Respiratory Journal, 2021, 57, 2001339.	3.1	26
204	Mortality and Exacerbations by Global Initiative for Chronic Obstructive Lung Disease Groups ABCD: 2011 Versus 2017 in the COPDGene® Cohort. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 64-73.	0.5	26
205	Genetics of Chronic Obstructive Pulmonary Disease. Seminars in Respiratory and Critical Care Medicine, 2003, 24, 151-160.	0.8	25
206	Identification of Chronic Obstructive Pulmonary Disease Axes That Predict All-Cause Mortality. American Journal of Epidemiology, 2018, 187, 2109-2116.	1.6	25
207	Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. Npj Systems Biology and Applications, 2018, 4, 25.	1.4	25
208	Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. Nature Communications, 2020, 11, 811.	5.8	25
209	Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study. PLoS ONE, 2014, 9, e91621.	1.1	25
210	Genetic Epidemiology of COPD. Chest, 2002, 121, 1S-6S.	0.4	24
211	Phenotypic and genetic heterogeneity among subjects with mild airflow obstruction in COPDGene. Respiratory Medicine, 2014, 108, 1469-1480.	1.3	24
212	Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 20-28.	1.4	24
213	Low FVC/TLC in Preserved Ratio Impaired Spirometry (PRISm) is associated with features of and progression to obstructive lung disease. Scientific Reports, 2020, 10, 5169.	1.6	24
214	Subtypes of COPD Have Unique Distributions and Differential Risk of Mortality. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2019, 6, 400-413.	0.5	24
215	Genetic Associations With Hypoxemia and Pulmonary Arterial Pressure in COPD. Chest, 2009, 135, 737-744.	0.4	23
216	Pulmonary function and emphysema in Williams–Beuren syndrome. American Journal of Medical Genetics, Part A, 2010, 152A, 653-656.	0.7	22

#	Article	IF	CITATIONS
217	Whole-Genome Sequencing in Severe Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 614-622.	1.4	22
218	Secondary polycythemia in chronic obstructive pulmonary disease: prevalence and risk factors. BMC Pulmonary Medicine, 2021, 21, 235.	0.8	22
219	Interaction of Cigarette Smoking and Polygenic Risk Score on Reduced Lung Function. JAMA Network Open, 2021, 4, e2139525.	2.8	22
220	Radiological correlates and clinical implications of the paradoxical lung function response to β2 agonists: an observational study. Lancet Respiratory Medicine,the, 2014, 2, 911-918.	5.2	21
221	Clinical, physiologic, and radiographic factors contributing to development of hypoxemia in moderate to severe COPD: a cohort study. BMC Pulmonary Medicine, 2016, 16, 169.	0.8	21
222	Genome-Wide Gene-by-Smoking Interaction Study of Chronic Obstructive Pulmonary Disease. American Journal of Epidemiology, 2021, 190, 875-885.	1.6	21
223	Identification of an emphysema-associated genetic variant near TGFB2 with regulatory effects in lung fibroblasts. ELife, 2019, 8, .	2.8	21
224	Alpha-1 Antitrypsin MZ Heterozygosity Is an Endotype of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 313-323.	2.5	21
225	Admixture Mapping Identifies a Quantitative Trait Locus Associated with FEV ₁ /FVC in the COPDGene Study. Genetic Epidemiology, 2014, 38, 652-659.	0.6	20
226	Integrative genomics identifies new genes associated with severe COPD and emphysema. Respiratory Research, 2018, 19, 46.	1.4	20
227	Sex-specific associations with DNA methylation in lung tissue demonstrate smoking interactions. Epigenetics, 2021, 16, 692-703.	1.3	20
228	Smoke and Mirrors. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 929-931.	2.5	19
229	Genetics of Chronic Obstructive Pulmonary Disease. Novartis Foundation Symposium, 2008, , 45-64.	1.2	19
230	Common Genetic Variants Associated with Resting Oxygenation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 678-687.	1.4	19
231	Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Human Molecular Genetics, 2019, 28, 2352-2364.	1.4	19
232	Beyond GWAS in COPD: Probing the Landscape between Gene-Set Associations, Genome-Wide Associations and Protein-Protein Interaction Networks. Human Heredity, 2014, 78, 131-139.	0.4	18
233	Integrating Multiple Correlated Phenotypes for Genetic Association Analysis by Maximizing Heritability. Human Heredity, 2015, 79, 93-104.	0.4	18
234	Risk of Lung Disease in PI MZ Heterozygotes. Current Status and Future Research Directions. Annals of the American Thoracic Society, 2016, 13, S341-S345.	1.5	18

#	Article	IF	CITATIONS
235	Functional Assays to Screen and Dissect Genomic Hits. Circulation Genomic and Precision Medicine, 2018, 11, e002178.	1.6	18
236	Analysis of Exonic Elastin Variants in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 751-755.	1.4	17
237	A Bayesian Nonparametric Model for Disease Subtyping: Application to Emphysema Phenotypes. IEEE Transactions on Medical Imaging, 2017, 36, 343-354.	5.4	17
238	Estimating drivers of cell state transitions using gene regulatory network models. BMC Systems Biology, 2017, 11, 139.	3.0	17
239	Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease. Journal of Molecular Medicine, 2018, 96, 1375-1385.	1.7	17
240	Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene. PLoS Genetics, 2019, 15, e1008229.	1.5	17
241	Subjects with diffuse idiopathic skeletal hyperostosis have an increased burden of coronary artery disease: An evaluation in the COPDGene cohort. Atherosclerosis, 2019, 287, 24-29.	0.4	17
242	Identification of putative causal loci in whole-genome sequencing data via knockoff statistics. Nature Communications, 2021, 12, 3152.	5.8	17
243	Genome-wide linkage analysis of pulmonary function in families of children with asthma in Costa Rica. Thorax, 2007, 62, 224-230.	2.7	16
244	Metabolomic profiling in a Hedgehog Interacting Protein (Hhip) murine model of chronic obstructive pulmonary disease. Scientific Reports, 2017, 7, 2504.	1.6	16
245	Disease Severity Dependence of the Longitudinal Association Between CT Lung Density and Lung Function in Smokers. Chest, 2018, 153, 638-645.	0.4	16
246	Lung Mass in Smokers. Academic Radiology, 2017, 24, 386-392.	1.3	15
247	Visual Assessment of Chest Computed Tomographic Images Is Independently Useful for Genetic Association Analysis in Studies of Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2017, 14, 33-40.	1.5	15
248	Pulmonary artery enlargement and mortality risk in moderate to severe COPD: results from COPDGene. European Respiratory Journal, 2020, 55, 1901812.	3.1	15
249	Heterozygosity of the Alpha 1â€Antitrypsin Pi*Z Allele and Risk of Liver Disease. Hepatology Communications, 2021, 5, 1348-1361.	2.0	15
250	Development of a Blood-based Transcriptional Risk Score for Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 161-170.	2.5	15
251	Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline. Chest, 2018, 153, 368-377.	0.4	14
252	Genomeâ€wide association analysis of COVIDâ€19 mortality risk in SARSâ€CoVâ€2 genomes identifies mutation in the SARSâ€CoVâ€2 spike protein that colocalizes with P.1 of the Brazilian strain. Genetic Epidemiology, 2021, 45, 685-693.	0.6	14

#	Article	IF	CITATIONS
253	Relative contributions of family history and a polygenic risk score on COPD and related outcomes: COPDGene and ECLIPSE studies. BMJ Open Respiratory Research, 2020, 7, e000755.	1.2	14
254	Lung proteomic biomarkers associated with chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L1119-L1130.	1.3	14
255	Linkage Analysis of Alpha 1-Antitrypsin Deficiency: Lessons for Complex Diseases. Human Heredity, 2001, 52, 223-232.	0.4	13
256	Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with Dedicator of Cytokinesis 1. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 428-436.	2.9	13
257	Traction Bronchiectasis/Bronchiolectasis on CT Scans in Relationship to Clinical Outcomes and Mortality: The COPDGene Study. Radiology, 2022, 304, 694-701.	3.6	13
258	A Between Ethnicities Comparison of Chronic Obstructive Pulmonary Disease Genetic Risk. Frontiers in Genetics, 2020, 11, 329.	1.1	12
259	Pulmonary Predictors of Incident Diabetes in Smokers. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2016, 3, 739-747.	0.5	12
260	Haplotype Thinking in Lung Disease. Proceedings of the American Thoracic Society, 2007, 4, 4-8.	3.5	11
261	Interpretable Clustering via Discriminative Rectangle Mixture Model. , 2016, , .		11
262	GWAS and systems biology analysis of depressive symptoms among smokers from the COPDGene cohort. Journal of Affective Disorders, 2019, 243, 16-22.	2.0	11
263	ADAM15 expression is increased in lung CD8+ T cells, macrophages, and bronchial epithelial cells in patients with COPD and is inversely related to airflow obstruction. Respiratory Research, 2020, 21, 188.	1.4	11
264	The Network Medicine Imperative and the Need for an International Network Medicine Consortium. American Journal of Medicine, 2020, 133, e451-e454.	0.6	11
265	A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L130-L143.	1.3	11
266	Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1803-1817.	2.9	11
267	On the association analysis of genomeâ€sequencing data: A spatial clustering approach for partitioning the entire genome into nonoverlapping windows. Genetic Epidemiology, 2017, 41, 332-340.	0.6	10
268	Applying Functional Genomics to Chronic Obstructive Pulmonary Disease. Annals of the American Thoracic Society, 2018, 15, S239-S242.	1.5	10
269	Sequencing Analysis at 8p23 Identifies Multiple Rare Variants in DLC1 Associated with Sleep-Related Oxyhemoglobin Saturation Level. American Journal of Human Genetics, 2019, 105, 1057-1068.	2.6	10
270	Microarray Data-Based Prioritization of Chronic Obstructive Pulmonary Disease Susceptibility Genes. Proceedings of the American Thoracic Society, 2006, 3, 472-472.	3.5	9

#	Article	IF	CITATIONS
271	Do sputum or circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue transcriptomic network META-analysis. Respiratory Research, 2019, 20, 5.	1.4	9
272	Genetic Variation in the Mitochondrial Glycerolâ€3â€Phosphate Acyltransferase Is Associated With Liver Injury. Hepatology, 2021, 74, 3394-3408.	3.6	9
273	Hedgehog interacting protein–expressing lung fibroblasts suppress lymphocytic inflammation in mice. JCI Insight, 2021, 6, .	2.3	9
274	A Risk Prediction Model for Mortality Among Smokers in the COPDGene® Study. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2020, 7, 346-361.	0.5	9
275	Genome-Wide Association Analysis of Single-Breath D <scp>l</scp> _{CO} . American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 523-531.	1.4	8
276	Somatotypes trajectories during adulthood and their association with COPD phenotypes. ERJ Open Research, 2020, 6, 00122-2020.	1.1	8
277	locStra: Fast analysis of regional/global stratification in wholeâ€genome sequencingÂstudies. Genetic Epidemiology, 2021, 45, 82-98.	0.6	8
278	10-Year Follow-Up of Lung Function, Respiratory Symptoms, and Functional Capacity in the COPDGene Study. Annals of the American Thoracic Society, 2022, 19, 381-388.	1.5	8
279	Interstitial Lung Abnormalities, Emphysema, and Spirometry in Smokers. Chest, 2022, 161, 999-1010.	0.4	8
280	Interstitial lung abnormalities are associated with decreased mean telomere length. European Respiratory Journal, 2022, 60, 2101814.	3.1	8
281	Common and Rare Variants Genetic Association Analysis of Cigarettes per Day Among Ever-Smokers in Chronic Obstructive Pulmonary Disease Cases and Controls. Nicotine and Tobacco Research, 2019, 21, 714-722.	1.4	7
282	DSP variants may be associated with longitudinal change in quantitative emphysema. Respiratory Research, 2019, 20, 160.	1.4	7
283	Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 92-102.	1.4	7
284	The Association of Multiparity with Lung Function and Chronic Obstructive Pulmonary Disease-Related Phenotypes. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2020, 7, 86-98.	0.5	7
285	Improved prediction of smoking status via isoform-aware RNA-seq deep learning models. PLoS Computational Biology, 2021, 17, e1009433.	1.5	7
286	Protein interaction networks provide insight into fetal origins of chronic obstructive pulmonary disease. Respiratory Research, 2022, 23, 69.	1.4	7
287	Polygenic transcriptome risk scores for COPD and lung function improve cross-ethnic portability of prediction in the NHLBI TOPMed program. American Journal of Human Genetics, 2022, 109, 857-870.	2.6	7
288	The Proteomic Profile of Interstitial Lung Abnormalities. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 337-346.	2.5	7

#	Article	IF	CITATIONS
289	Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Respiratory Research, 2022, 23, 97.	1.4	7
290	The Value of Rare Genetic Variation in the Prediction of Common Obesity in European Ancestry Populations. Frontiers in Endocrinology, 2022, 13, 863893.	1.5	7
291	Diffuse Idiopathic Skeletal Hyperostosis in Smokers and Restrictive Spirometry Pattern: An Analysis of the COPDGene Cohort. Journal of Rheumatology, 2020, 47, 531-538.	1.0	6
292	DNA methylation perturbations may link altered development and aging in the lung. Aging, 2021, 13, 1742-1764.	1.4	6
293	Serum Proteins Associated with Emphysema Progression in Severe Alpha-1 Antitrypsin Deficiency. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2017, 4, 204-216.	0.5	6
294	CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Science Advances, 2022, 8, .	4.7	6
295	<i>FARVATX</i> : Familyâ€Based Rare Variant Association Test for Xâ€Linked Genes. Genetic Epidemiology, 2016, 40, 475-485.	0.6	5
296	Identifying a Deletion Affecting Total Lung Capacity Among Subjects in the COPDGene Study Cohort. Genetic Epidemiology, 2016, 40, 81-88.	0.6	5
297	Progress in disease progression genetics: dissecting the genetic origins of lung function decline in COPD. Thorax, 2017, 72, 389-390.	2.7	5
298	Reported environmental exposures are inversely associated with obtaining a genetic diagnosis in the Undiagnosed Diseases Network. American Journal of Medical Genetics, Part A, 2019, 179, 958-965.	0.7	5
299	Assessing pleiotropy and mediation in genetic loci associated with chronic obstructive pulmonary disease. Genetic Epidemiology, 2019, 43, 318-329.	0.6	5
300	An Integrative Genomic Strategy Identifies sRAGE as a Causal and Protective Biomarker of Lung Function. Chest, 2022, 161, 76-84.	0.4	5
301	Pulmonary Artery Enlargement Is Associated with Exacerbations and Mortality in Ever-Smokers with Preserved Ratio Impaired Spirometry. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 481-485.	2.5	5
302	Genetics and epidemiology of AATD. , 2019, , 27-38.		5
303	Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
304	Perspective: How can genetics help?. Nature, 2012, 489, S7-S7.	13.7	4
305	Gene-environment interaction testing in family-based association studies with phenotypically ascertained samples: a causal inference approach. Biostatistics, 2012, 13, 468-481.	0.9	4
306	A flexible and nearly optimal sequential testing approach to randomized testing: QUICK TOP. Genetic Epidemiology, 2020, 44, 139-147.	0.6	4

#	Article	IF	CITATIONS
307	Heme metabolism genes Downregulated in COPD Cachexia. Respiratory Research, 2020, 21, 100.	1.4	4
308	Validation of a method to assess emphysema severity by spirometry in the COPDGene study. Respiratory Research, 2020, 21, 103.	1.4	4
309	Connecting COPD GWAS Genes: FAM13A Controls TGFβ2 Secretion by Modulating AP-3 Transport. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 532-543.	1.4	4
310	Hemizygous Deletion on Chromosome 3p26.1 Is Associated with Heavy Smoking among African American Subjects in the COPDGene Study. PLoS ONE, 2016, 11, e0164134.	1.1	4
311	Turning subtypes into disease axes to improve prediction of COPD progression. Thorax, 2019, 74, 906-909.	2.7	3
312	A fast and efficient smoothing approach to Lasso regression and an application in statistical genetics: polygenic risk scores for chronic obstructive pulmonary disease (COPD). Statistics and Computing, 2021, 31, 1.	0.8	3
313	Increased mortality associated with frequent exacerbations in COPD patients with mild-to-moderate lung function impairment, and smokers with normal spirometry. Respiratory Medicine: X, 2021, 3, 100025.	1.4	3
314	Alternative poly-adenylation modulates α1-antitrypsin expression in chronic obstructive pulmonary disease. PLoS Genetics, 2021, 17, e1009912.	1.5	3
315	Expert Panel Discusses the Importance of Systems Medicine. Systems Medicine (New Rochelle, N Y), 2018, 1, 3-8.	1.4	1
316	Reply to Marruchella: Preserved Ratio Impaired Spirometry and Interstitial Lung Abnormalities in Smokers. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1293-1294.	2.5	1
317	A Smoothed Version of the Lassosum Penalty for Fitting Integrated Risk Models Using Summary Statistics or Individual-Level Data. Genes, 2022, 13, 112.	1.0	1
318	Optimism is associated with respiratory symptoms and functional status in chronic obstructive pulmonary disease. Respiratory Research, 2022, 23, 19.	1.4	1
319	A multidisciplinary approach to a better understanding of and therapy for chronic obstructive pulmonary disease. Journal of Organ Dysfunction, 2006, 2, 176-182.	0.3	0
320	Genetics of Asthma and COPD. , 2009, , 37-51.		0
321	Using Network Methodology to Infer Population Substructure. PLoS ONE, 2015, 10, e0130708.	1.1	0
322	Letter to the Editor: Response by Authors. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2020, 7, 82-85.	0.5	0
323	Covariate adjustment of spirometric and smoking phenotypes: The potential of neural network models. PLoS ONE, 2022, 17, e0266752.	1.1	0
324	Heritability Analyses Uncover Shared Genetic Effects of Lung Function and Change over Time. Genes, 2022, 13, 1261.	1.0	0