Jan Kosinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4139078/publications.pdf

Version: 2024-02-01

172207 243296 3,378 43 29 44 citations h-index g-index papers 54 54 54 4428 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrative structural modeling of macromolecular complexes using Assembline. Nature Protocols, 2022, 17, 152-176.	5.5	33
2	Al-based structure prediction empowers integrative structural analysis of human nuclear pores. Science, 2022, 376, .	6.0	136
3	Structure of the mycobacterial ESX-5 type VII secretion system pore complex. Science Advances, 2021, 7,	4.7	45
4	Integrative Structural Biology in the Era of Accurate Structure Prediction. Journal of Molecular Biology, 2021, 433, 167127.	2.0	36
5	Nuclear pores dilate and constrict in cellulo. Science, 2021, 374, eabd9776.	6.0	162
6	Structural role of essential light chains in the apicomplexan glideosome. Communications Biology, 2020, 3, 568.	2.0	10
7	Structure of the TFIIIC subcomplex Ï,, A provides insights into RNA polymerase III pre-initiation complex formation. Nature Communications, 2020, 11, 4905.	5. 8	16
8	In-cell architecture of the nuclear pore and snapshots of its turnover. Nature, 2020, 586, 796-800.	13.7	139
9	Molecular basis of tRNA recognition by the Elongator complex. Science Advances, 2019, 5, eaaw2326.	4.7	44
10	Structure of Prototypic Peptide Transporter DtpA from <i>E. coli</i> in Complex with Valganciclovir Provides Insights into Drug Binding of Human PepT1. Journal of the American Chemical Society, 2019, 141, 2404-2412.	6.6	51
11	Systematic analysis of protein turnover in primary cells. Nature Communications, 2018, 9, 689.	5.8	280
12	From the resolution revolution to evolution: structural insights into the evolutionary relationships between vesicle coats and the nuclear pore. Current Opinion in Structural Biology, 2018, 52, 32-40.	2.6	21
13	In situ architecture of the algal nuclear pore complex. Nature Communications, 2018, 9, 2361.	5. 8	107
14	Architecture of the yeast Elongator complex. EMBO Reports, 2017, 18, 264-279.	2.0	75
15	A short linear motif in scaffold Nup145C connects Y-complex with pre-assembled outer ring Nup82 complex. Nature Communications, 2017, 8, 1107.	5. 8	32
16	Structural insights into transcription initiation by yeast RNA polymerase I. EMBO Journal, 2017, 36, 2698-2709.	3.5	58
17	Higherâ€order assemblies of oligomeric cargo receptor complexes form the membrane scaffold of the Cvt vesicle. EMBO Reports, 2016, 17, 1044-1060.	2.0	26
18	Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 2016, 352, 363-365.	6.0	284

#	Article	IF	CITATIONS
19	Automated structure modeling of large protein assemblies using crosslinks as distance restraints. Nature Methods, 2016, 13, 515-520.	9.0	49
20	Specialization versus conservation: How Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription. Transcription, 2016, 7, 127-132.	1.7	9
21	Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains. Molecular Cell, 2016, 61, 125-137.	4.5	123
22	Xlink Analyzer: Software for analysis and visualization of cross-linking data in the context of three-dimensional structures. Journal of Structural Biology, 2015, 189, 177-183.	1.3	156
23	In situ structural analysis of the human nuclear pore complex. Nature, 2015, 526, 140-143.	13.7	361
24	Molecular structures of unbound and transcribing RNA polymerase III. Nature, 2015, 528, 231-236.	13.7	167
25	MODexplorer: an integrated tool for exploring protein sequence, structure and function relationships. Bioinformatics, 2013, 29, 953-954.	1.8	13
26	Improving your target-template alignment with MODalign. Bioinformatics, 2012, 28, 1038-1039.	1.8	10
27	REPAIRtoirea database of DNA repair pathways. Nucleic Acids Research, 2011, 39, D788-D792.	6. 5	61
28	Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair. Human Mutation, 2010, 31, 975-982.	1.1	52
29	Physiological truncation and domain organization of a novel uracilâ€DNAâ€degrading factor. FEBS Journal, 2010, 277, 1245-1259.	2.2	5
30	Probabilistic cross-link analysis and experiment planning for high-throughput elucidation of protein structure. Protein Science, 2009, 13, 3298-3313.	3.1	15
31	The PMS2 Subunit of Human MutLî± Contains a Metal Ion Binding Domain of the Iron-Dependent Repressor Protein Family. Journal of Molecular Biology, 2008, 382, 610-627.	2.0	55
32	Novel protein fold discovered in the Pabl family of restriction enzymes. Nucleic Acids Research, 2007, 35, 1908-1918.	6. 5	47
33	Phylogenetic analysis of haloalkane dehalogenases. Proteins: Structure, Function and Bioinformatics, 2007, 67, 305-316.	1.5	82
34	A model of restriction endonuclease Mval in complex with DNA: A template for interpretation of experimental data and a guide for specificity engineering. Proteins: Structure, Function and Bioinformatics, 2007, 68, 324-336.	1.5	13
35	Structure and Evolutionary Origin of Ca2+-Dependent Herring Type II Antifreeze Protein. PLoS ONE, 2007, 2, e548.	1.1	66
36	Theoretical model of restriction endonuclease Hpal in complex with DNA, predicted by fold recognition and validated by site-directed mutagenesis. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1059-1068.	1.5	8

#	ARTICLE	IF	CITATIONS
37	Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase. Nucleic Acids Research, 2006, 34, 1925-1934.	6.5	36
38	Identifying an interaction site between MutH and the C-terminal domain of MutL by crosslinking, affinity purification, chemical coding and mass spectrometry. Nucleic Acids Research, 2006, 34, 3169-3180.	6.5	41
39	The PD-(D/E)XK superfamily revisited: identification of new members among proteins involved in DNA metabolism and functional predictions for domains of (hitherto) unknown function. BMC Bioinformatics, 2005, 6, 172.	1.2	84
40	FRankenstein becomes a cyborg: The automatic recombination and realignment of fold recognition models in CASP6. Proteins: Structure, Function and Bioinformatics, 2005, 61, 106-113.	1.5	66
41	Mva1269I: A Monomeric Type IIS Restriction Endonuclease from Micrococcus Varians with Two EcoRland Fokl-like Catalytic Domains. Journal of Biological Chemistry, 2005, 280, 41584-41594.	1.6	25
42	Analysis of the Quaternary Structure of the MutL C-terminal Domain. Journal of Molecular Biology, 2005, 351, 895-909.	2.0	53
43	A ?FRankenstein's monster? approach to comparative modeling: Merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation. Proteins: Structure, Function and Bioinformatics, 2003, 53, 369-379.	1.5	154