Neil A Ranson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4138823/publications.pdf

Version: 2024-02-01

86 5,736 39 72
papers citations h-index g-index

97 97 97 6286
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Research, 2022, 50, 2128-2142.	14.5	16
2	Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nature Communications, 2022, 13, 591.	12.8	22
3	Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nature Communications, 2022, 13, .	12.8	12
4	Mechanism of glycogen synthase inactivation and interaction with glycogenin. Nature Communications, 2022, 13 , .	12.8	15
5	Cryo-EM structure of human mitochondrial HSPD1. IScience, 2021, 24, 102022.	4.1	16
6	Structures of <i>Rhodopseudomonas palustris</i> RC-LH1 complexes with open or closed quinone channels. Science Advances, 2021, 7, .	10.3	38
7	Insights into SusCD-mediated glycan import by a prominent gut symbiont. Nature Communications, 2021, 12, 44.	12.8	42
8	Structural insight into Pichia pastoris fatty acid synthase. Scientific Reports, 2021, 11, 9773.	3.3	10
9	A Replicating Viral Vector Greatly Enhances Accumulation of Helical Virus-Like Particles in Plants. Viruses, 2021, 13, 885.	3.3	15
10	Plant-expressed virus-like particles reveal the intricate maturation process of a eukaryotic virus. Communications Biology, 2021, 4, 619.	4.4	2
11	The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nature Communications, 2021, 12, 4174.	12.8	22
12	Exploring the Effect of Structure-Based Scaffold Hopping on the Inhibition of Coxsackievirus A24v Transduction by Pentavalent N-Acetylneuraminic Acid Conjugates. International Journal of Molecular Sciences, 2021, 22, 8418.	4.1	2
13	The structure of a plant-specific partitivirus capsid reveals a unique coat protein domain architecture with an intrinsically disordered protrusion. Communications Biology, 2021, 4, 1155.	4.4	11
14	In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus. Communications Biology, 2021, 4, 1407.	4.4	6
15	Amyloid structures: much more than just a cross-Î ² fold. Current Opinion in Structural Biology, 2020, 60, 7-16.	5.7	150
16	Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Structure, 2020, 28, 1087-1100.e3.	3.3	16
17	Structure of the shutdown state of myosin-2. Nature, 2020, 588, 515-520.	27.8	50
18	Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Nature Structural and Molecular Biology, 2020, 27, 1048-1056.	8.2	71

#	Article	IF	Citations
19	Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. Communications Biology, 2020, 3, 766.	4.4	32
20	Structural and functional insights into oligopeptide acquisition by the RagAB transporter from Porphyromonas gingivalis. Nature Microbiology, 2020, 5, 1016-1025.	13.3	46
21	Dynamics in the murine norovirus capsid revealed by high-resolution cryo-EM. PLoS Biology, 2020, 18, e3000649.	5.6	19
22	Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts. PLoS Pathogens, 2020, 16, e1009146.	4.7	31
23	Structural characterization of genomic RNA-coat protein contacts in single-stranded RNA viruses by high-resolution cryo-EM. Access Microbiology, 2020, 2, .	0.5	0
24	Securing the future of research computing in the biosciences. PLoS Computational Biology, 2019, 15, e1006958.	3.2	6
25	Combining Transient Expression and Cryo-EM to Obtain High-Resolution Structures of Luteovirid Particles. Structure, 2019, 27, 1761-1770.e3.	3.3	23
26	Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Research, 2019, 47, 11441-11451.	14.5	60
27	Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6ÂÃ… resolution. Nature, 2019, 575, 53.	5- 53.% .	83
28	Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease. Frontiers in Plant Science, 2019, 10, 880.	3.6	27
29	Metabolic control of BRISC–SHMT2 assembly regulates immune signalling. Nature, 2019, 570, 194-199.	27.8	51
30	Affimer reagents as tools in diagnosing plant virus diseases. Scientific Reports, 2019, 9, 7524.	3.3	10
31	Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3556-3561.	7.1	54
32	Collection, pre-processing and on-the-fly analysis of data for high-resolution, single-particle cryo-electron microscopy. Nature Protocols, 2019, 14, 100-118.	12.0	72
33	Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 397-402.	7.1	43
34	The Structure of an Infectious Human Polyomavirus and Its Interactions with Cellular Receptors. Structure, 2018, 26, 839-847.e3.	3.3	29
35	The structure of a \hat{I}^2 2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. Nature Communications, 2018, 9, 4517.	12.8	124
36	A new era for understanding amyloid structures and disease. Nature Reviews Molecular Cell Biology, 2018, 19, 755-773.	37.0	654

#	Article	IF	CITATIONS
37	Agnoprotein Is an Essential Egress Factor during BK Polyomavirus Infection. International Journal of Molecular Sciences, 2018, 19, 902.	4.1	27
38	Approaches to altering particle distributions in cryo-electron microscopy sample preparation. Acta Crystallographica Section D: Structural Biology, 2018, 74, 560-571.	2.3	108
39	The 3.3 à structure of a plant geminivirus using cryo-EM. Nature Communications, 2018, 9, 2369.	12.8	69
40	HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nature Microbiology, 2017, 2, 17098.	13.3	69
41	The structures of a naturally empty cowpea mosaic virus particle and its genome-containing counterpart by cryo-electron microscopy. Scientific Reports, 2017, 7, 539.	3.3	20
42	Combining high-resolution cryo-electron microscopy and mutagenesis to develop cowpea mosaic virus for bionanotechnology. Biochemical Society Transactions, 2017, 45, 1263-1269.	3.4	11
43	Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Scientific Reports, 2016, 6, 38644.	3.3	89
44	Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2. Journal of Molecular Biology, 2016, 428, 431-448.	4.2	80
45	Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus. Structure, 2016, 24, 567-575.	3.3	22
46	An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods, 2016, 100, 3-15.	3.8	178
47	Lateral opening in the intact \hat{l}^2 -barrel assembly machinery captured by cryo-EM. Nature Communications, 2016, 7, 12865.	12.8	157
48	MpUL-multi: Software for Calculation of Amyloid Fibril Mass per Unit Length from TB-TEM Images. Scientific Reports, 2016, 6, 21078.	3.3	11
49	New Structural Insights into the Genome and Minor Capsid Proteins of BK Polyomavirus using Cryo-Electron Microscopy. Structure, 2016, 24, 528-536.	3.3	47
50	Bacteriophage MS2 genomic RNA encodes an assembly instruction manual for its capsid. Bacteriophage, 2016, 6, e1157666.	1.9	38
51	Mechanisms of assembly and genome packaging in an RNA virus revealed by high-resolution cryo-EM. Nature Communications, 2015, 6, 10113.	12.8	57
52	Revealing the density of encoded functions in a viral RNA. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2227-2232.	7.1	64
53	Asymmetric Genome Organization in an RNA Virus Revealed via Graph-Theoretical Analysis of Tomographic Data. PLoS Computational Biology, 2015, 11, e1004146.	3.2	12
54	pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5691-5696.	7.1	95

#	Article	lF	CITATIONS
55	\hat{I}^2 2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH. PLoS ONE, 2014, 9, e104492.	2.5	30
56	Limits of Structural Plasticity in a Picornavirus Capsid Revealed by a Massively Expanded Equine Rhinitis A Virus Particle. Journal of Virology, 2014, 88, 6093-6099.	3.4	20
57	Packaging signals in single-stranded RNA viruses: nature's alternative to a purely electrostatic assembly mechanism. Journal of Biological Physics, 2013, 39, 277-287.	1.5	86
58	Sequence-Specific, RNA–Protein Interactions Overcome Electrostatic Barriers Preventing Assembly of Satellite Tobacco Necrosis Virus Coat Protein. Journal of Molecular Biology, 2013, 425, 1050-1064.	4.2	50
59	The Asymmetric Structure of an Icosahedral Virus Bound to Its Receptor Suggests a Mechanism for Genome Release. Structure, 2013, 21, 1225-1234.	3.3	61
60	A new paradigm for the roles of the genome in ssRNA viruses. Future Virology, 2013, 8, 531-543.	1.8	18
61	Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Nucleic Acids Research, 2013, 41, 5912-5926.	14.5	69
62	Structural constraints on the three-dimensional geometry of simple viruses: case studies of a new predictive tool. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, 140-150.	0.3	25
63	Hsc70â€induced Changes in Clathrinâ€Auxilin Cage Structure Suggest a Role for Clathrin Light Chains in Cage Disassembly. Traffic, 2013, 14, 987-996.	2.7	24
64	Isolation of an Asymmetric RNA Uncoating Intermediate for a Single-Stranded RNA Plant Virus. Journal of Molecular Biology, 2012, 417, 65-78.	4.2	30
65	Simple Rules for Efficient Assembly Predict the Layout of a Packaged Viral RNA. Journal of Molecular Biology, 2011, 408, 399-407.	4.2	59
66	Visualising a Viral RNA Genome Poised for Release from Its Receptor Complex. Journal of Molecular Biology, 2011, 408, 408-419.	4.2	36
67	Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. FEBS Letters, 2010, 584, 2786-2790.	2.8	56
68	Mutually-induced Conformational Switching of RNA and Coat Protein Underpins Efficient Assembly of a Viral Capsid. Journal of Molecular Biology, 2010, 401, 309-322.	4.2	37
69	Cryo-Electron Microscopy of Viruses. , 2010, , 1-33.		1
70	The Three-dimensional Structure of Genomic RNA in Bacteriophage MS2: Implications for Assembly. Journal of Molecular Biology, 2008, 375, 824-836.	4.2	105
71	RNA Packing Specificity and Folding during Assembly of the Bacteriophage MS2. Computational and Mathematical Methods in Medicine, 2008, 9, 339-349.	1.3	12
72	Allosteric signaling of ATP hydrolysis in GroEL–GroES complexes. Nature Structural and Molecular Biology, 2006, 13, 147-152.	8.2	142

#	Article	IF	CITATIONS
73	Insights into the architecture of the Ure2p yeast protein assemblies from helical twisted fibrils. Protein Science, 2006, 15, 2481-2487.	7.6	18
74	Electron microscopy as a tool for 3D structure determination in molecular structural biology. , 2005, , .		0
75	Dissecting the Fine Details of Assembly of aT = 3 Phage Capsid. Journal of Theoretical Medicine, 2005, 6, 119-125.	0.5	10
76	The chaperonin folding machine. Trends in Biochemical Sciences, 2002, 27, 627-632.	7.5	118
77	Structures of Unliganded and ATP-Bound States of the Escherichia coli Chaperonin GroEL by Cryoelectron Microscopy. Journal of Structural Biology, 2001, 135, 115-125.	2.8	40
78	ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy. Cell, 2001, 107, 869-879.	28.9	274
79	Multivalent Binding of Nonnative Substrate Proteins by the Chaperonin GroEL. Cell, 2000, 100, 561-573.	28.9	183
80	Secretin PulD: Association with pilot PulS, structure, and ion-conducting channel formation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8173-8177.	7.1	189
81	Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings. Journal of Molecular Biology, 1998, 278, 267-278.	4.2	61
82	Chaperonins. Biochemical Journal, 1998, 333, 233-242.	3.7	176
83	Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. Journal of Molecular Biology, 1997, 266, 656-664.	4.2	88
84	The Origins and Consequences of Asymmetry in the Chaperonin Reaction Cycle. Journal of Molecular Biology, 1995, 249, 138-152.	4.2	178
85	Chaperonins can Catalyse the Reversal of Early Aggregation Steps when a Protein Misfolds. Journal of Molecular Biology, 1995, 250, 581-586.	4.2	131
86	Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy. Nature, 1994, 371, 261-264.	27.8	366