Konrad Walus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4138418/publications.pdf

Version: 2024-02-01

40 papers 1,124 citations

471509 17 h-index 33 g-index

42 all docs 42 docs citations

42 times ranked 2015 citing authors

#	Article	IF	CITATIONS
1	Paper as a Platform for Sensing Applications and Other Devices: A Review. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8345-8362.	8.0	269
2	Extrusion and Microfluidicâ€Based Bioprinting to Fabricate Biomimetic Tissues and Organs. Advanced Materials Technologies, 2020, 5, 1901044.	5 . 8	110
3	Delivering high-resolution landmarks using inkjet micropatterning for spatial monitoring of leaf expansion. Plant Methods, 2011, 7, 1.	4.3	96
4	Piezoelectric Paper Fabricated via Nanostructured Barium Titanate Functionalization of Wood Cellulose Fibers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7547-7553.	8.0	93
5	Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene) Tj ETQq $1\ 1\ 0.78$	84314 rgBT 2.8	[
6	Substrateâ€Free Fabrication of Selfâ€Supporting ZnO Nanowire Arrays. Advanced Materials, 2012, 24, 3999-4004.	21.0	44
7	A Dynamic Electromechanical Model for Electrochemically Driven Conducting Polymer Actuators. IEEE/ASME Transactions on Mechatronics, 2011, 16, 42-49.	5.8	38
8	Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip. Lab on A Chip, 2016, 16, 3351-3361.	6.0	35
9	Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology. FASEB Journal, 2020, 34, 1652-1664.	0.5	35
10	Initiating and Monitoring the Evolution of Single Electrons Within Atom-Defined Structures. Physical Review Letters, 2018, 121, 166801.	7.8	33
11	Controlled Orientation and Alignment in Films of Single-Walled Carbon Nanotubes Using Inkjet Printing. Langmuir, 2012, 28, 8753-8759.	3.5	32
12	Inkjet Printed All-Polymer Flexural Plate Wave Sensors. IEEE Sensors Journal, 2013, 13, 4005-4013.	4.7	22
13	Multiple time constant modelling of a printed conducting polymer electrode. Electrochimica Acta, 2011, 56, 4711-4716.	5.2	21
14	SiQAD: A Design and Simulation Tool for Atomic Silicon Quantum Dot Circuits. IEEE Nanotechnology Magazine, 2020, 19, 137-146.	2.0	21
15	Consequences of Many-Cell Correlations in Clocked Quantum-Dot Cellular Automata. IEEE Nanotechnology Magazine, 2015, 14, 638-647.	2.0	19
16	Efficient Simulation of Correlated Dynamics in Quantum-Dot Cellular Automata (QCA). IEEE Nanotechnology Magazine, 2014, 13, 294-307.	2.0	18
17	Architecture for an external input into a molecular QCA circuit. Journal of Computational Electronics, 2009, 8, 35-42.	2.5	17
18	Limits of adiabatic clocking in quantum-dot cellular automata. Journal of Applied Physics, 2020, 127, .	2.5	14

#	Article	IF	Citations
19	Three-dimensional bioprinting healthy and diseased models of the brain tissue using stem cells. Current Opinion in Biomedical Engineering, 2020, 14, 25-33.	3.4	12
20	Photonic metal–polymer resin nanocomposites with chiral nematic order. Chemical Communications, 2016, 52, 7810-7813.	4.1	11
21	Low-Energy Eigenspectrum Decomposition (LEED) of Quantum-Dot Cellular Automata Networks. IEEE Nanotechnology Magazine, 2021, 20, 104-112.	2.0	11
22	High subthreshold field-emission current due to hydrogen adsorption in single-walled carbon nanotubes: A first-principles study. Applied Physics Letters, 2009, 95, 262102.	3.3	10
23	Flexible and robust hybrid paper with a large piezoelectric coefficient. Journal of Materials Chemistry C, 2016, 4, 1448-1453.	5.5	7
24	Three-Input NPN Class Gate Library for Atomic Silicon Quantum Dots. IEEE Design and Test, 2022, 39, 147-155.	1.2	7
25	Zinc exhaustion in ZnO electrodeposition. Thin Solid Films, 2015, 592, 76-80.	1.8	6
26	Implementation of a Simulation Engine for Clocked Molecular QCA., 2006,,.		5
27	Quantum Mechanical Simulation of QCA with a Reduced Hamiltonian Model., 2008,,.		5
28	Modeling and Evaluating Errors Due to Random Clock Shifts in Quantum-Dot Cellular Automata Circuits. Journal of Electronic Testing: Theory and Applications (JETTA), 2009, 25, 55-66.	1.2	5
29	Chloride contamination of electrochemically grown zinc oxide thick films. Journal of Applied Electrochemistry, 2017, 47, 223-228.	2.9	3
30	Population congestion in 3-state quantum-dot cellular automata. Journal of Applied Physics, 2020, 127,	2.5	3
31	Dynamically tunable intravascular catheter delivery of hydrogels for endovascular embolization. MRS Advances, 2021, 6, 66-71.	0.9	3
32	A microfluidic-enabled combinatorial formulation and integrated inkjet printing platform for evaluating functionally graded material blends. Lab on A Chip, 2021, 21, 4427-4436.	6.0	3
33	Calculating the steady-state polarizations of quantum cellular automata (QCA) circuits. Journal of Computational Electronics, 2014, 13, 569-584.	2.5	2
34	Thick-film electrochemical growth of Al-doped zinc oxide. Journal of Applied Electrochemistry, 2017, 47, 85-93.	2.9	2
35	Characterization of the Displacement Tolerance of QCA Interconnects. , 2008, , .		1
36	Acid-Free Electrochemical Chromium Etch and Release of Nanoscale Gold Films. Journal of Microelectromechanical Systems, 2016, 25, 701-707.	2.5	1

3

#	Article	IF	CITATIONS
37	Implications of a Low Stiffness Substrate in Flexural Plate Wave Sensing Applications. IEEE Sensors Journal, 2014, 14, 1583-1590.	4.7	O
38	Collaborative Conception of a R2R printed Testing Platform for Printed Electronics Standardization. , 2019, , .		0
39	Modelling Techniques for Simulating Large QCA Circuits. Lecture Notes in Computer Science, 2014, , 259-273.	1.3	O
40	Modelling Techniques for Simulating Large QCA Circuits. Lecture Notes in Computer Science, 2014, , 259-273.	1.3	0