## Marc W Crepeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4138280/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits and Environmental Data in Douglas-fir. Genes, 2021, 12, 110.                                                                  | 2.4 | 14        |
| 2  | Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. Plant Journal, 2020, 104, 365-376.                                                           | 5.7 | 32        |
| 3  | Histone deacetylase inhibitor treatment promotes spontaneous caregiving behaviour in nonâ€aggressive<br>virgin male mice. Journal of Neuroendocrinology, 2019, 31, e12734.                                              | 2.6 | 9         |
| 4  | Development of a highly efficient Axiomâ"¢ 70 K SNP array for Pyrus and evaluation for high-density mapping and germplasm characterization. BMC Genomics, 2019, 20, 331.                                                | 2.8 | 40        |
| 5  | Genomic architecture of complex traits in loblolly pine. New Phytologist, 2019, 221, 1789-1801.                                                                                                                         | 7.3 | 60        |
| 6  | A new genomic tool for walnut ( Juglans regia L.): development and validation of the highâ€density<br>Axiomâ"¢ J.Âregia 700K SNP genotyping array. Plant Biotechnology Journal, 2019, 17, 1027-1036.                    | 8.3 | 79        |
| 7  | Genomic Variation Among and Within Six <i>Juglans</i> Species. G3: Genes, Genomes, Genetics, 2018, 8, 2153-2165.                                                                                                        | 1.8 | 73        |
| 8  | From Pine Cones to Read Clouds: Rescaffolding the Megagenome of Sugar Pine (Pinus lambertiana). G3:<br>Genes, Genomes, Genetics, 2017, 7, 1563-1568.                                                                    | 1.8 | 19        |
| 9  | The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae.<br>G3: Genes, Genomes, Genetics, 2017, 7, 3157-3167.                                                                | 1.8 | 103       |
| 10 | An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.<br>GigaScience, 2017, 6, 1-4.                                                                                         | 6.4 | 71        |
| 11 | First Draft Assembly and Annotation of the Genome of a California Endemic Oak <i>Quercus<br/>lobata</i> Née (Fagaceae). G3: Genes, Genomes, Genetics, 2016, 6, 3485-3495.                                               | 1.8 | 95        |
| 12 | Sequence of the Sugar Pine Megagenome. Genetics, 2016, 204, 1613-1626.                                                                                                                                                  | 2.9 | 169       |
| 13 | The walnut ( <i>Juglans regia</i> ) genome sequence reveals diversity in genes coding for the biosynthesis of nonâ€structural polyphenols. Plant Journal, 2016, 87, 507-532.                                            | 5.7 | 233       |
| 14 | The <i>Drosophila</i> Genome Nexus: A Population Genomic Resource of 623 <i>Drosophila<br/>melanogaster</i> Genomes, Including 197 from a Single Ancestral Range Population. Genetics, 2015, 199,<br>1229-1241.         | 2.9 | 273       |
| 15 | Sequencing and Assembly of the 22-Gb Loblolly Pine Genome. Genetics, 2014, 196, 875-890.                                                                                                                                | 2.9 | 286       |
| 16 | Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies.<br>Genome Biology, 2014, 15, R59.                                                                                         | 9.6 | 424       |
| 17 | Unique Features of the Loblolly Pine ( <i>Pinus taeda</i> L.) Megagenome Revealed Through Sequence<br>Annotation. Genetics, 2014, 196, 891-909.                                                                         | 2.9 | 207       |
| 18 | Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.). Tree Genetics and Genomes, 2013, 9, 1529-1535. | 1.6 | 23        |

MARC W CREPEAU

| #  | ARTICLE                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Insights into the Loblolly Pine Genome: Characterization of BAC and Fosmid Sequences. PLoS ONE, 2013, 8, e72439.                                                                            | 2.5 | 46        |
| 20 | Population Genomics of Sub-Saharan Drosophila melanogaster: African Diversity and Non-African<br>Admixture. PLoS Genetics, 2012, 8, e1003080.                                               | 3.5 | 318       |
| 21 | Circumventing Heterozygosity: Sequencing the Amplified Genome of a Single Haploid <i>Drosophila<br/>melanogaster</i> Embryo. Genetics, 2011, 188, 239-246.                                  | 2.9 | 51        |
| 22 | Biliverdin Reductase-Induced Phytochrome Chromophore Deficiency in Transgenic Tobacco. Plant<br>Physiology, 2001, 125, 266-277.                                                             | 4.8 | 20        |
| 23 | Modification of Distinct Aspects of Photomorphogenesis via Targeted Expression of Mammalian<br>Biliverdin Reductase in Transgenic Arabidopsis Plants. Plant Physiology, 1999, 121, 629-640. | 4.8 | 47        |