
William Dichtel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4136442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98.	6.4	33
2	Controlled nâ€Ðoping of Naphthaleneâ€Ðiimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	11.1	13
3	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	23.0	128
4	Identifying the physicochemical properties of β-cyclodextrin polymers that determine the adsorption of perfluoroalkyl acids. Water Research, 2022, 209, 117938.	5.3	9
5	Layered structures of assembled imine-linked macrocycles and two-dimensional covalent organic frameworks give rise to prolonged exciton lifetimes. Journal of Materials Chemistry C, 2022, 10, 3015-3026.	2.7	7
6	Arene–perfluoroarene interactions confer enhanced mechanical properties to synthetic nanotubes. Chemical Science, 2022, 13, 2475-2480.	3.7	12
7	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	23.0	99
8	Cyclophane-based two-dimensional polymer formed by an interfacial click reaction. Cell Reports Physical Science, 2022, 3, 100806.	2.8	3
9	A Semiconducting Twoâ€Dimensional Polymer as an Organic Electrochemical Transistor Active Layer. Advanced Materials, 2022, 34, e2110703.	11.1	19
10	A Tunable Porous β-Cyclodextrin Polymer Platform to Understand and Improve Anionic PFAS Removal. ACS Central Science, 2022, 8, 663-669.	5.3	27
11	Hot Press Synthesis of MOF/Textile Composites for Nerve Agent Detoxification. , 2022, 4, 1511-1515.		14
12	Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discussions, 2021, 225, 226-240.	1.6	41
13	Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. Journal of the American Chemical Society, 2021, 143, 1503-1512.	6.6	28
14	Anisotropic Transient Disordering of Colloidal, Two-Dimensional CdSe Nanoplatelets upon Optical Excitation. Nano Letters, 2021, 21, 1288-1294.	4.5	8
15	Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2021, 143, 649-656.	6.6	40
16	Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes. Journal of the American Chemical Society, 2021, 143, 1466-1473.	6.6	88
17	Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films. Chemistry of Materials, 2021, 33, 1341-1352.	3.2	25
18	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nature Materials, 2021, 20, 1142-1148.	13.3	158

#	Article	IF	CITATIONS
19	Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects. , 2021, 3, 398-405.		6
20	Two-Dimensional Covalent Organic Framework Solid Solutions. Journal of the American Chemical Society, 2021, 143, 7081-7087.	6.6	27
21	Diverse Proton-Conducting Nanotubes via a Tandem Macrocyclization and Assembly Strategy. Journal of the American Chemical Society, 2021, 143, 8145-8153.	6.6	7
22	Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Interfaces, 2021, 13, 38680-38687.	4.0	18
23	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 350-356.	2.5	20
24	Lithium-Conducting Self-Assembled Organic Nanotubes. Journal of the American Chemical Society, 2021, 143, 17655-17665.	6.6	7
25	Product analysis and insight into the mechanochemical destruction of anionic PFAS with potassium hydroxide. Journal of Hazardous Materials Advances, 2021, 3, 100014.	1.2	6
26	Blending Polyurethane Thermosets Using Dynamic Urethane Exchange. Macromolecules, 2021, 54, 11126-11133.	2.2	26
27	Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chemical Science, 2021, 12, 16014-16022.	3.7	14
28	Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling. Nano Letters, 2020, 20, 963-970.	4.5	28
29	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	6.6	190
30	Supramolecular polymerization provides non-equilibrium product distributions of imine-linked macrocycles. Chemical Science, 2020, 11, 1957-1963.	3.7	14
31	Acid Exfoliation of Imineâ€ŀinked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie, 2020, 132, 5203-5209.	1.6	31
32	Nucleation–Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1367-1374.	6.6	58
33	Acid Exfoliation of Imineâ€ŀinked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. Angewandte Chemie - International Edition, 2020, 59, 5165-5171.	7.2	128
34	Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities. Journal of the American Chemical Society, 2020, 142, 16-20.	6.6	256
35	Rapid Synthesis of High Surface Area Imineâ€Linked 2D Covalent Organic Frameworks by Avoiding Pore Collapse During Isolation. Advanced Materials, 2020, 32, e1905776.	11.1	125
36	Evaluating the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater with Different Adsorbents Using a Suspect Screening Approach. Environmental Science and Technology Letters, 2020, 7, 954-960.	3.9	36

#	Article	IF	CITATIONS
37	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 18637-18644.	6.6	87
38	Best Practices for Evaluating New Materials as Adsorbents for Water Treatment. , 2020, 2, 1532-1544.		47
39	Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics. Journal of the American Chemical Society, 2020, 142, 14957-14965.	6.6	68
40	Spin and Phonon Design in Modular Arrays of Molecular Qubits. Chemistry of Materials, 2020, 32, 10200-10206.	3.2	37
41	Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?. ACS Central Science, 2020, 6, 1488-1496.	5.3	190
42	Doping Modulation of the Charge Injection Barrier between a Covalent Organic Framework Monolayer and Graphene. Chemistry of Materials, 2020, 32, 9228-9237.	3.2	18
43	Incorporating Functionalized Cellulose to Increase the Toughness of Covalent Adaptable Networks. ACS Applied Materials & Interfaces, 2020, 12, 44110-44116.	4.0	21
44	β-Cyclodextrin Polymers with Different Cross-Linkers and Ion-Exchange Resins Exhibit Variable Adsorption of Anionic, Zwitterionic, and Nonionic PFASs. Environmental Science & Technology, 2020, 54, 12693-12702.	4.6	54
45	Cyclodextrin Polymers with Nitrogen-Containing Tripodal Crosslinkers for Efficient PFAS Adsorption. , 2020, 2, 1240-1245.		69
46	Highâ€Sensitivity Acoustic Molecular Sensors Based on Largeâ€Area, Sprayâ€Coated 2D Covalent Organic Frameworks. Advanced Materials, 2020, 32, e2004205.	11.1	67
47	Polymerized Molecular Receptors as Adsorbents to Remove Micropollutants from Water. Accounts of Chemical Research, 2020, 53, 2314-2324.	7.6	61
48	Transient Lattice Response upon Photoexcitation in CuInSe ₂ Nanocrystals with Organic or Inorganic Surface Passivation. ACS Nano, 2020, 14, 13548-13556.	7.3	10
49	Mechanism of Formation of Benzotrithiophene-Based Covalent Organic Framework Monolayers on Coinage-Metal Surfaces: C–C Coupling Selectivity and Monomer–Metal Interactions. Chemistry of Materials, 2020, 32, 10688-10696.	3.2	6
50	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	6.6	25
51	Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Research, 2020, 182, 115950.	5.3	87
52	In Situ Grazingâ€Incidence Wideâ€Angle Scattering Reveals Mechanisms for Phase Distribution and Disorientation in 2D Halide Perovskite Films. Advanced Materials, 2020, 32, e2002812.	11.1	86
53	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 2020, 5, 826-832.	8.8	192
54	Evaluating the effects of water matrix constituents on micropollutant removal by activated carbon and β-cyclodextrin polymer adsorbents. Water Research, 2020, 173, 115551.	5.3	39

#	Article	IF	CITATIONS
55	Reprocessing Postconsumer Polyurethane Foam Using Carbamate Exchange Catalysis and Twin-Screw Extrusion. ACS Central Science, 2020, 6, 921-927.	5.3	116
56	Pathway Complexity in the Stacking of Imine-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 7104-7111.	3.2	22
57	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 14708-14714.	7.2	19
58	Resorcinarene Cavitand Polymers for the Remediation of Halomethanes and 1,4-Dioxane. Journal of the American Chemical Society, 2019, 141, 13315-13319.	6.6	47
59	Reprocessing Cross-Linked Polyurethanes by Catalyzing Carbamate Exchange. Macromolecules, 2019, 52, 6330-6335.	2.2	87
60	Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. ACS Central Science, 2019, 5, 1892-1899.	5.3	44
61	Cooperative Selfâ€Assembly of Pyridineâ€2,6â€Diimineâ€Linked Macrocycles into Mechanically Robust Nanotubes. Angewandte Chemie, 2019, 131, 14850-14856.	1.6	4
62	Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection. , 2019, 1, 440-446.		55
63	Improved synthesis of β-ketoenamine-linked covalent organic frameworks <i>via</i> monomer exchange reactions. Chemical Communications, 2019, 55, 2680-2683.	2.2	100
64	Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. Nature Communications, 2019, 10, 504.	5.8	121
65	Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. Journal of Physical Chemistry B, 2019, 123, 1432-1441.	1.2	102
66	β-Cyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water. ACS Applied Materials & Interfaces, 2019, 11, 8089-8096.	4.0	49
67	Reduction of a Tetrafluoroterephthalonitrileâ€Î²â€Cyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. Angewandte Chemie - International Edition, 2019, 58, 12049-12053.	7.2	113
68	Reduction of a Tetrafluoroterephthalonitrileâ€Î²â€Cyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. Angewandte Chemie, 2019, 131, 12177-12181.	1.6	35
69	Defect-Triggered Phase Transition in Cesium Lead Halide Perovskite Nanocrystals. , 2019, 1, 185-191.		51
70	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	6.4	62
71	Buckling of Two-Dimensional Covalent Organic Frameworks under Thermal Stress. Industrial & Engineering Chemistry Research, 2019, 58, 9883-9887.	1.8	30
72	Cross-linker Chemistry Determines the Uptake Potential of Perfluorinated Alkyl Substances by β-Cyclodextrin Polymers. Macromolecules, 2019, 52, 3747-3752.	2.2	64

#	Article	IF	CITATIONS
73	A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. Journal of the American Chemical Society, 2019, 141, 6473-6478.	6.6	40
74	QSARs to predict adsorption affinity of organic micropollutants for activated carbon and β-cyclodextrin polymer adsorbents. Water Research, 2019, 154, 217-226.	5.3	48
75	Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 3051-3065.	3.2	105
76	Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chemical Science, 2019, 10, 3796-3801.	3.7	118
77	Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 19728-19735.	6.6	79
78	Efficient PFAS Removal by Amine-Functionalized Sorbents: Critical Review of the Current Literature. Environmental Science and Technology Letters, 2019, 6, 688-695.	3.9	160
79	Local Electronic Structure of Molecular Heterojunctions in a Singleâ€Layer 2D Covalent Organic Framework. Advanced Materials, 2019, 31, e1805941.	11.1	74
80	Tetrafluoroterephthalonitrile-crosslinked β-cyclodextrin polymers for efficient extraction and recovery of organic micropollutants from water. Journal of Chromatography A, 2018, 1541, 52-56.	1.8	36
81	Hydrolytic Stability of Boronate Esterâ€Linked Covalent Organic Frameworks. Advanced Theory and Simulations, 2018, 1, 1700015.	1.3	57
82	Equilibration of Imineâ€Linked Polymers to Hexagonal Macrocycles Driven by Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 3989-3993.	1.7	33
83	Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. CheM, 2018, 4, 308-317.	5.8	364
84	Measuring and Manipulating the Adhesion of Graphene. Nano Letters, 2018, 18, 449-454.	4.5	25
85	Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. ACS Nano, 2018, 12, 385-391.	7.3	68
86	Reprocessable Acid-Degradable Polycarbonate Vitrimers. Macromolecules, 2018, 51, 389-397.	2.2	273
87	Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. Chemical Science, 2018, 9, 8883-8889.	3.7	56
88	Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 12677-12681.	6.6	279
89	Rapidly Reprocessable Cross-Linked Polyhydroxyurethanes Based on Disulfide Exchange. ACS Macro Letters, 2018, 7, 1226-1231.	2.3	180
90	Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science, 2018, 361, 52-57.	6.0	474

6

#	Article	IF	CITATIONS
91	Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. ACS Sustainable Chemistry and Engineering, 2018, 6, 11145-11159.	3.2	348
92	High aspect ratio nanotubes assembled from macrocyclic iminium salts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8883-8888.	3.3	36
93	Diazatetracenes Derived from the Benzannulation of Acetylenes: Electronic Tuning via Substituent Effects and External Stimuli. Journal of Organic Chemistry, 2017, 82, 2004-2010.	1.7	17
94	Colloidal Covalent Organic Frameworks. ACS Central Science, 2017, 3, 58-65.	5.3	216
95	Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. Journal of Applied Polymer Science, 2017, 134, 44984.	1.3	103
96	Electrochemical Hydrogen Evolution at Ordered Mo ₇ Ni ₇ . ACS Catalysis, 2017, 7, 3375-3383.	5.5	62
97	Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. ACS Central Science, 2017, 3, 533-543.	5.3	251
98	Rapid access to substituted 2-naphthyne intermediates via the benzannulation of halogenated silylalkynes. Chemical Science, 2017, 8, 5675-5681.	3.7	22
99	Non-Isocyanate Polyurethane Thermoplastic Elastomer: Amide-Based Chain Extender Yields Enhanced Nanophase Separation and Properties in Polyhydroxyurethane. Macromolecules, 2017, 50, 4425-4434.	2.2	80
100	Benchmarking Micropollutant Removal by Activated Carbon and Porous β-Cyclodextrin Polymers under Environmentally Relevant Scenarios. Environmental Science & Technology, 2017, 51, 7590-7598.	4.6	114
101	β-Cyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations. Journal of the American Chemical Society, 2017, 139, 7689-7692.	6.6	275
102	Beyond Media Composition: Cell Plasma Membrane Disruptions by Graphene Oxide. CheM, 2017, 2, 324-325.	5.8	2
103	Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates. Journal of the American Chemical Society, 2017, 139, 4999-5002.	6.6	276
104	Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. Journal of the American Chemical Society, 2017, 139, 16310-16318.	6.6	121
105	Synthesis of 2D Imine-Linked Covalent Organic Frameworks through Formal Transimination Reactions. Journal of the American Chemical Society, 2017, 139, 12911-12914.	6.6	204
106	Development and Performance Characterization of a Polyimine Covalent Organic Framework Thin-Film Composite Nanofiltration Membrane. Environmental Science & Technology, 2017, 51, 14352-14359.	4.6	166
107	Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures. Accounts of Chemical Research, 2017, 50, 2776-2788.	7.6	111
108	Sequence-defined oligo(<i>ortho</i> -arylene) foldamers derived from the benzannulation of <i>ortho</i> (arylene ethynylene)s. Chemical Science, 2016, 7, 6357-6364.	3.7	40

#	Article	IF	CITATIONS
109	Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons. ACS Nano, 2016, 10, 4847-4856.	7.3	52
110	Graphene Oxide Nanosheets Stimulate Ruffling and Shedding of Mammalian Cell Plasma Membranes. CheM, 2016, 1, 273-286.	5.8	30
111	Two-dimensional Covalent Organic Framework Thin Films Grown in Flow. Journal of the American Chemical Society, 2016, 138, 11433-11436.	6.6	103
112	Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework. ACS Central Science, 2016, 2, 667-673.	5.3	349
113	Hybrid Supercapacitors from Framework Materials. CheM, 2016, 1, 21-23.	5.8	1
114	Cotton Fabric Functionalized with a \hat{l}^2 -Cyclodextrin Polymer Captures Organic Pollutants from Contaminated Air and Water. Chemistry of Materials, 2016, 28, 8340-8346.	3.2	110
115	Moving Beyond Boron: The Emergence of New Linkage Chemistries in Covalent Organic Frameworks. Macromolecules, 2016, 49, 5297-5305.	2.2	110
116	Discrete, Hexagonal Boronate Ester-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2016, 28, 4884-4888.	3.2	29
117	Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chemical Communications, 2016, 52, 3690-3693.	2.2	369
118	Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature, 2016, 529, 190-194.	13.7	1,407
119	Regioselective Synthesis of Polyheterohalogenated Naphthalenes via the Benzannulation of Haloalkynes. Chemistry - A European Journal, 2015, 21, 18122-18127.	1.7	43
120	Cationâ€Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage. Angewandte Chemie - International Edition, 2015, 54, 13225-13229.	7.2	86
121	University learning: Improve undergraduate science education. Nature, 2015, 523, 282-284.	13.7	122
122	Retaining the Activity of Enzymes and Fluorophores Attached to Graphene Oxide. Chemistry of Materials, 2015, 27, 4499-4504.	3.2	13
123	Patterned growth of oriented 2 <scp>D</scp> covalent organic framework thin films on singleâ€layer graphene. Journal of Polymer Science Part A, 2015, 53, 378-384.	2.5	70
124	Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films. ACS Nano, 2015, 9, 3178-3183.	7.3	318
125	Tetraarylborate polymer networks as single-ion conducting solid electrolytes. Chemical Science, 2015, 6, 5499-5505.	3.7	123
126	Growth rates and water stability of 2D boronate ester covalent organic frameworks. Chemical Communications, 2015, 51, 7532-7535.	2.2	127

#	Article	IF	CITATIONS
127	Real-Time, Ultrasensitive Detection of RDX Vapors Using Conjugated Network Polymer Thin Films. Chemistry of Materials, 2015, 27, 3813-3816.	3.2	23
128	Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. Journal of the American Chemical Society, 2015, 137, 14019-14022.	6.6	593
129	Functionalization of 3D covalent organic frameworks using monofunctional boronic acids. Polymer, 2014, 55, 330-334.	1.8	42
130	Mechanistic Studies of Two-Dimensional Covalent Organic Frameworks Rapidly Polymerized from Initially Homogenous Conditions. Journal of the American Chemical Society, 2014, 136, 8783-8789.	6.6	233
131	Regioselective Asao–Yamamoto Benzannulations of Diaryl Acetylenes. Organic Letters, 2014, 16, 5926-5929.	2.4	22
132	Rapid Synthesis of Crowded Aromatic Architectures from Silyl Acetylenes. Organic Letters, 2014, 16, 4416-4419.	2.4	41
133	Laser-Induced Sub-millisecond Heating Reveals Distinct Tertiary Ester Cleavage Reaction Pathways in a Photolithographic Resist Polymer. ACS Nano, 2014, 8, 5746-5756.	7.3	23
134	Accessing extended and partially fused hexabenzocoronenes using a benzannulation–cyclodehydrogenation approach. Chemical Science, 2013, 4, 3973.	3.7	75
135	Noncovalent Functionalization of Graphene by Molecular and Polymeric Adsorbates. Journal of Physical Chemistry Letters, 2013, 4, 2649-2657.	2.1	97
136	Preservation of Antibody Selectivity on Graphene by Conjugation to a Tripod Monolayer. Angewandte Chemie - International Edition, 2013, 52, 3177-3180.	7.2	40
137	Improving the Binding Characteristics of Tripodal Compounds on Single Layer Graphene. ACS Nano, 2013, 7, 7193-7199.	7.3	35
138	Î ² -Ketoenamine-Linked Covalent Organic Frameworks Capable of Pseudocapacitive Energy Storage. Journal of the American Chemical Society, 2013, 135, 16821-16824.	6.6	949
139	Bulk Synthesis of Exfoliated Two-Dimensional Polymers Using Hydrazone-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 14952-14955.	6.6	433
140	Mixed Linker Strategies for Organic Framework Functionalization. Chemistry - A European Journal, 2013, 19, 818-827.	1.7	103
141	Postsynthetic functionalization of 3D covalent organic frameworks. Chemical Communications, 2013, 49, 2457.	2.2	114
142	A Ferrocene-Functionalized [2]Rotaxane with Two Fluorophores as Stoppers. Journal of Organic Chemistry, 2013, 78, 2091-2098.	1.7	63
143	Conjugated Porous Polymers For TNT Vapor Detection. ACS Macro Letters, 2013, 2, 423-426.	2.3	148
144	Direct Detection of RDX Vapor Using a Conjugated Polymer Network. Journal of the American Chemical Society, 2013, 135, 8357-8362.	6.6	133

#	Article	IF	CITATIONS
145	Rationally synthesized two-dimensional polymers. Nature Chemistry, 2013, 5, 453-465.	6.6	879
146	Control of the Graphene–Protein Interface Is Required To Preserve Adsorbed Protein Function. Analytical Chemistry, 2013, 85, 2754-2759.	3.2	106
147	Highly Efficient Benzannulation of Poly(phenylene ethynylene)s. Angewandte Chemie - International Edition, 2012, 51, 12051-12054.	7.2	55
148	Quantification of the Surface Diffusion of Tripodal Binding Motifs on Graphene Using Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2012, 134, 6224-6236.	6.6	56
149	Polymers stripped down. Nature Chemistry, 2012, 4, 244-245.	6.6	15
150	A classification scheme for the stacking of two-dimensional boronate ester-linked covalent organic frameworks. Journal of Materials Chemistry, 2012, 22, 17460.	6.7	73
151	PROFILE: Early Excellence in Physical Organic Chemistry. Journal of Physical Organic Chemistry, 2012, 25, 529-529.	0.9	0
152	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	7.3	3,103
153	Lattice Expansion of Highly Oriented 2D Phthalocyanine Covalent Organic Framework Films. Angewandte Chemie - International Edition, 2012, 51, 2623-2627.	7.2	250
154	High hopes: can molecular electronics realise its potential?. Chemical Society Reviews, 2012, 41, 4827.	18.7	277
155	Internal Functionalization of Threeâ€Dimensional Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 1885-1889.	7.2	198
156	Thermodynamic analysis on energy densities of batteries. Energy and Environmental Science, 2011, 4, 2614.	15.6	749
157	Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. Journal of the American Chemical Society, 2011, 133, 17614-17617.	6.6	149
158	A 2D Covalent Organic Framework with 4.7-nm Pores and Insight into Its Interlayer Stacking. Journal of the American Chemical Society, 2011, 133, 19416-19421.	6.6	307
159	A mechanistic study of Lewis acid-catalyzed covalent organic framework formation. Chemical Science, 2011, 2, 1588-1593.	3.7	132
160	A solid-state switch containing an electrochemically switchable bistable poly[n]rotaxane. Journal of Materials Chemistry, 2011, 21, 1487-1495.	6.7	45
161	Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science, 2011, 332, 228-231.	6.0	997
162	Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chemistry, 2010, 2, 672-677.	6.6	636

#	Article	IF	CITATIONS
163	Alternate State Variables for Emerging Nanoelectronic Devices. IEEE Nanotechnology Magazine, 2009, 8, 66-75.	1.1	40
164	Complexation between Methyl Viologen (Paraquat) Bis(Hexafluorophosphate) and Dibenzo[24]Crownâ€8 Revisited. Chemistry - A European Journal, 2009, 15, 106-116.	1.7	64
165	Facile postpolymerization endâ€modification of RAFT polymers. Journal of Polymer Science Part A, 2009, 47, 346-356.	2.5	90
166	Free Energy Barrier for Molecular Motions in Bistable [2]Rotaxane Molecular Electronic Devices. Journal of Physical Chemistry A, 2009, 113, 2136-2143.	1.1	38
167	A Oneâ€Pot Synthesis of Constitutionally Unsymmetrical Rotaxanes Using Sequential Cu ^I â€Catalyzed Azide–Alkyne Cycloadditions. Chemistry - A European Journal, 2008, 14, 4168-4177.	1.7	59
168	Heterogeneous Catalysis through Microcontact Printing. Angewandte Chemie - International Edition, 2008, 47, 9927-9932.	7.2	53
169	A Redox-Switchable α-Cyclodextrin-Based [2]Rotaxane. Journal of the American Chemical Society, 2008, 130, 11294-11296.	6.6	132
170	Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 2008, 130, 2382-2383.	6.6	567
171	Folding of a donor-acceptor polyrotaxane by using noncovalent bonding interactions. Proceedings of the United States of America, 2008, 105, 6514-6519.	3.3	84
172	Kinetic and Thermodynamic Approaches for the Efficient Formation of Mechanical Bonds. Accounts of Chemical Research, 2008, 41, 1750-1761.	7.6	151
173	Designing bistable [2]rotaxanes for molecular electronic devices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1607-1625.	1.6	78
174	Clicked Interlocked Molecules. Bulletin of the Chemical Society of Japan, 2007, 80, 1856-1869.	2.0	119
175	Molecular Machines. The Electrical Engineering Handbook, 2007, , 11-1-11-48.	0.2	Ο
176	A Clicked Bistable [2]Rotaxane. Organic Letters, 2007, 9, 1287-1290.	2.4	94
177	Structural and Co-conformational Effects of Alkyne-Derived Subunits in Charged Donorâ^'Acceptor [2]Catenanes. Journal of the American Chemical Society, 2007, 129, 8236-8246.	6.6	86
178	A Liquid-Crystalline Bistable [2]Rotaxane. Angewandte Chemie - International Edition, 2007, 46, 4675-4679.	7.2	172
179	Rotaxanes and Catenanes by Click Chemistry. QSAR and Combinatorial Science, 2007, 26, 1165-1174.	1.5	74
180	Modular Synthesis and Dynamics of a Variety of Donor–Acceptor Interlocked Compounds Prepared by Click Chemistry. Chemistry - an Asian Journal, 2007, 2, 634-647.	1.7	97

#	Article	IF	CITATIONS
181	Light-Harvesting Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet Oxygen via Two-Photon Excited FRET. Chemistry of Materials, 2006, 18, 3682-3692.	3.2	112
182	Cyclobis(paraquat-p-phenylene)-Based [2]Catenanes Prepared by Kinetically Controlled Reactions Involving Alkynes. Organic Letters, 2006, 8, 4835-4838.	2.4	93
183	Efficient Templated Synthesis of Donorâ`'Acceptor Rotaxanes Using Click Chemistry. Journal of the American Chemical Society, 2006, 128, 10388-10390.	6.6	183
184	Amphiphilic diblock star polymer catalysts via atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 4939-4951.	2.5	47
185	Functionally Layered Dendrimers:  A New Building Block and Its Application to the Synthesis of Multichromophoric Light-Harvesting Systems. Organic Letters, 2005, 7, 4451-4454.	2.4	112
186	Photosensitization of Singlet Oxygen via Two-Photon-Excited Fluorescence Resonance Energy Transfer in a Water-Soluble Dendrimer. Chemistry of Materials, 2005, 17, 2267-2275.	3.2	184
187	Singlet Oxygen Generation via Two-Photon Excited FRET. Journal of the American Chemical Society, 2004, 126, 5380-5381.	6.6	228