Jaideep Singh Bains

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology, 2016, 41, 80-102.	2.8	453
2	Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nature Neuroscience, 2017, 20, 176-188.	7.1	384
3	Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nature Neuroscience, 2005, 8, 1078-1086.	7.1	304
4	CB1 Receptor Signaling in the Brain: Extracting Specificity from Ubiquity. Neuropsychopharmacology, 2018, 43, 4-20.	2.8	223
5	Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nature Neuroscience, 2009, 12, 438-443.	7.1	208
6	Hypothalamic CRH neurons orchestrate complex behaviours after stress. Nature Communications, 2016, 7, 11937.	5.8	204
7	Functional Interactions between Stress and the Endocannabinoid System: From Synaptic Signaling to Behavioral Output. Journal of Neuroscience, 2010, 30, 14980-14986.	1.7	202
8	Astrocyte-Mediated Distributed Plasticity at Hypothalamic Glutamate Synapses. Neuron, 2009, 64, 391-403.	3.8	189
9	Presynaptic modulation of CA3 network activity. Nature Neuroscience, 1998, 1, 201-209.	7.1	188
10	Reciprocal interactions between CA3 network activity and strength of recurrent collateral synapses. Nature Neuroscience, 1999, 2, 720-726.	7.1	145
11	Stress-related synaptic plasticity in the hypothalamus. Nature Reviews Neuroscience, 2015, 16, 377-388.	4.9	142
12	Characterization of Corticotropin-Releasing Hormone neurons in the Paraventricular Nucleus of the Hypothalamus of Crh-IRES-Cre Mutant Mice. PLoS ONE, 2013, 8, e64943.	1.1	134
13	Physiological Regulation of Magnocellular Neurosecretory Cell Activity: Integration of Intrinsic, Local and Afferent Mechanisms. Journal of Neuroendocrinology, 2013, 25, 678-710.	1.2	132
14	Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nature Medicine, 2017, 23, 355-360.	15.2	130
15	Social transmission and buffering of synaptic changes after stress. Nature Neuroscience, 2018, 21, 393-403.	7.1	130
16	Repeated Stress Impairs Endocannabinoid Signaling in the Paraventricular Nucleus of the Hypothalamus. Journal of Neuroscience, 2010, 30, 11188-11196.	1.7	129
17	Functional evidence that the angiotensin antagonist losartan crosses the blood-brain barrier in the rat. Brain Research Bulletin, 1993, 30, 33-39.	1.4	125
18	Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Research, 1992, 599, 223-229.	1.1	122

#	Article	IF	CITATIONS
19	Optogenetics: 10 years after ChR2 in neurons—views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	7.1	122
20	Glia: they make your memories stick!. Trends in Neurosciences, 2007, 30, 417-424.	4.2	121
21	Paraventricular nucleus CRH neurons encode stress controllability and regulate defensive behavior selection. Nature Neuroscience, 2020, 23, 398-410.	7.1	106
22	Electrophysiology of the Circumventricular Organs. Frontiers in Neuroendocrinology, 1996, 17, 440-475.	2.5	103
23	Retrograde Regulation of GABA Transmission by the Tonic Release of Oxytocin and Endocannabinoids Governs Postsynaptic Firing. Journal of Neuroscience, 2007, 27, 1325-1333.	1.7	102
24	Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nature Communications, 2020, 11, 2014.	5.8	89
25	Enteric Glia Are Targets of the Sympathetic Innervation of the Myenteric Plexus in the Guinea Pig Distal Colon. Journal of Neuroscience, 2010, 30, 6801-6809.	1.7	85
26	Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nature Neuroscience, 2013, 16, 605-612.	7.1	84
27	Characterization of A11 Neurons Projecting to the Spinal Cord of Mice. PLoS ONE, 2014, 9, e109636.	1.1	84
28	Retrograde Opioid Signaling Regulates Glutamatergic Transmission in the Hypothalamus. Journal of Neuroscience, 2009, 29, 7349-7358.	1.7	83
29	Glial Regulation of Neuronal Function: From Synapse to Systems Physiology. Journal of Neuroendocrinology, 2012, 24, 566-576.	1.2	80
30	Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in Motor Learning and Memory. Journal of Biological Chemistry, 2006, 281, 6273-6282.	1.6	79
31	Integration of Asynchronously Released Quanta Prolongs the Postsynaptic Spike Window. Journal of Neuroscience, 2007, 27, 6684-6691.	1.7	78
32	Glucocorticoid feedback uncovers retrograde opioid signaling at hypothalamic synapses. Nature Neuroscience, 2013, 16, 596-604.	7.1	69
33	Sexually dimorphic neuronal responses to social isolation. ELife, 2016, 5, .	2.8	67
34	Nitric oxide depolarizes Type II paraventricular nucleus neurons in vitro. Neuroscience, 1997, 79, 149-159.	1.1	66
35	Stress-induced priming of glutamate synapses unmasks associative short-term plasticity. Nature Neuroscience, 2010, 13, 1257-1264.	7.1	66
36	Climbing Fiber Discharge Regulates Cerebellar Functions by Controlling the Intrinsic Characteristics of Purkinje Cell Output. Journal of Neurophysiology, 2007, 97, 2590-2604.	0.9	62

#	Article	IF	CITATIONS
37	Angiotensin II neurotransmitter actions in paraventricular nucleus are potentiated by a nitric oxide synthase inhibitor. Regulatory Peptides, 1994, 50, 52-59.	1.9	58
38	Endocannabinoids Gate State-Dependent Plasticity of Synaptic Inhibition in Feeding Circuits. Neuron, 2011, 71, 529-541.	3.8	58
39	Cocaine potentiates excitatory drive in the perifornical/lateral hypothalamus. Journal of Physiology, 2012, 590, 3677-3689.	1.3	54
40	Stressâ€induced structural and functional modifications of astrocytes—Further implicating glia in the central response to stress. Glia, 2019, 67, 1806-1820.	2.5	48
41	A genetically encoded fluorescent biosensor for extracellular l-lactate. Nature Communications, 2021, 12, 7058.	5.8	46
42	Priming of Excitatory Synapses by α1Adrenoceptor-Mediated Inhibition of Group III Metabotropic Glutamate Receptors. Journal of Neuroscience, 2003, 23, 6223-6231.	1.7	45
43	Noradrenaline Triggers Multivesicular Release at Glutamatergic Synapses in the Hypothalamus. Journal of Neuroscience, 2005, 25, 11385-11395.	1.7	44
44	Statistical Model Relating CA3 Burst Probability to Recovery From Burst-Induced Depression at Recurrent Collateral Synapses. Journal of Neurophysiology, 2001, 86, 2736-2747.	0.9	43
45	Brain-Derived Neurotrophic Factor Silences GABA Synapses Onto Hypothalamic Neuroendocrine Cells Through a Postsynaptic Dynamin-Mediated Mechanism. Journal of Neurophysiology, 2006, 95, 2193-2198.	0.9	43
46	MAP Kinases Couple Hindbrain-Derived Catecholamine Signals to Hypothalamic Adrenocortical Control Mechanisms during Glycemia-Related Challenges. Journal of Neuroscience, 2011, 31, 18479-18491.	1.7	42
47	Dopamine Modulates Use-Dependent Plasticity of Inhibitory Synapses. Journal of Neuroscience, 2004, 24, 5162-5171.	1.7	39
48	The intricate link between glucocorticoids and endocannabinoids at stress-relevant synapses in the hypothalamus. Neuroscience, 2012, 204, 31-37.	1.1	37
49	Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain, 2021, 162, 1416-1425.	2.0	35
50	Osmoregulation Requires Brain Expression of the Renal Na-K-2Cl Cotransporter NKCC2. Journal of Neuroscience, 2015, 35, 5144-5155.	1.7	34
51	Metaplasticity of Hypothalamic Synapses following In Vivo Challenge. Neuron, 2009, 62, 839-849.	3.8	33
52	A synaptocentric view of the neuroendocrine response to stress. European Journal of Neuroscience, 2010, 32, 2011-2021.	1.2	33
53	Cholecystokinin Switches the Plasticity of GABA Synapses in the Dorsomedial Hypothalamus via Astrocytic ATP Release. Journal of Neuroscience, 2018, 38, 8515-8525.	1.7	33
54	Changing the tune: plasticity and adaptation of retrograde signals. Trends in Neurosciences, 2013, 36, 471-479.	4.2	30

#	Article	IF	CITATIONS
55	Optogenetic Activation of A11 Region Increases Motor Activity. Frontiers in Neural Circuits, 2018, 12, 86.	1.4	30
56	Balancing tonic and phasic inhibition in hypothalamic corticotropinâ€releasing hormone neurons. Journal of Physiology, 2018, 596, 1919-1929.	1.3	29
57	Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron, 2021, 109, 1513-1526.e11.	3.8	29
58	Social communication of affective states. Current Opinion in Neurobiology, 2021, 68, 44-51.	2.0	26
59	Dual Regulation of Anterograde and Retrograde Transmission by Endocannabinoids. Journal of Neuroscience, 2011, 31, 12011-12020.	1.7	25
60	Activation of N-methyl-d-aspartate receptors evokes calcium spikes in the dendrites of rat hypothalamic paraventricular nucleus neurons. Neuroscience, 1999, 90, 885-891.	1.1	23
61	Beyond inhibition: GABA synapses tune the neuroendocrine stress axis. BioEssays, 2014, 36, 561-569.	1.2	21
62	Experience Salience Gates Endocannabinoid Signaling at Hypothalamic Synapses. Journal of Neuroscience, 2014, 34, 6177-6181.	1.7	21
63	C-type Natriuretic Peptide Inhibits L-type Ca2+ Current in Rat Magnocellular Neurosecretory Cells by Activating the NPR-C Receptor. Journal of Neurophysiology, 2005, 94, 612-621.	0.9	20
64	Obesity-induced astrocyte dysfunction impairs heterosynaptic plasticity in the orbitofrontal cortex. Cell Reports, 2021, 36, 109563.	2.9	20
65	Open-source, cost-effective system for low-light in vivo fiber photometry. Neurophotonics, 2018, 5, 1.	1.7	20
66	Neurotransmitter diversity in preâ€synaptic terminals located in the parvicellular neuroendocrine paraventricular nucleus of the rat and mouse hypothalamus. Journal of Comparative Neurology, 2018, 526, 1287-1306.	0.9	18
67	Glutamatergic synaptic transmission in neuroendocrine cells: Basic principles and mechanisms of plasticity. Frontiers in Neuroendocrinology, 2010, 31, 296-306.	2.5	16
68	Metabotropic Glutamate Receptors: Gatekeepers of Homeostasis. Journal of Neuroendocrinology, 2010, 22, 785-792.	1.2	16
69	Asynchronous presynaptic glutamate release enhances neuronal excitability during the postâ€spike refractory period. Journal of Physiology, 2016, 594, 1005-1015.	1.3	16
70	Shortâ€ŧerm plasticity impacts information transfer at glutamate synapses onto parvocellular neuroendocrine cells in the paraventricular nucleus of the hypothalamus. Journal of Physiology, 2011, 589, 4259-4270.	1.3	15
71	Presynaptic mGluRs Control the Duration of Endocannabinoid-Mediated DSI. Journal of Neuroscience, 2018, 38, 10444-10453.	1.7	15
72	A Neuroethics Backbone for the Evolving Canadian Brain Research Strategy. Neuron, 2019, 101, 370-374.	3.8	15

#	Article	IF	CITATIONS
73	Neuromodulators, stress and plasticity: a role for endocannabinoid signalling. Journal of Experimental Biology, 2014, 217, 102-108.	0.8	14
74	Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release. Journal of Neuroscience, 2015, 35, 13160-13170.	1.7	14
75	Activation of lateral hypothalamic group III metabotropic glutamate receptors suppresses cocaine-seeking following abstinence and normalizes drug-associated increases in excitatory drive to orexin/hypocretin cells. Neuropharmacology, 2019, 154, 22-33.	2.0	14
76	Reduced NMDA receptor sensitivity may underlie the resistance of subpopulations of PVN neurons to excitotoxicity. NeuroReport, 1997, 8, 2101-2105.	0.6	13
77	Slowly Inactivating Potassium Conductance (ID): A Potential Target for Stroke Therapy. Stroke, 2001, 32, 2624-2634.	1.0	12
78	Sex-Specific Vasopressin Signaling Buffers Stress-Dependent Synaptic Changes in Female Mice. Journal of Neuroscience, 2020, 40, 8842-8852.	1.7	12
79	Hyperpolarizing after-potentials regulate generation of long-duration plateau depolarizations in rat paraventricular nucleus neurons. European Journal of Neuroscience, 1998, 10, 1412-1421.	1.2	9
80	Chronic alcohol consumption alters homeâ€cage behaviors and responses to ethologically relevant predator tasks in mice. Alcoholism: Clinical and Experimental Research, 2022, 46, 1616-1629.	1.4	9
81	Regulation of autonomic pathways by angiotensin. Current Opinion in Endocrinology, Diabetes and Obesity, 1999, 6, 19.	0.6	8
82	Long duration pressor responses following activation of subfornical organ neurons in rats are the result of increased circulating vasopressin. Neuroscience Letters, 1997, 233, 81-84.	1.0	7
83	Can homeostatic circuits learn and remember?. Journal of Physiology, 2006, 576, 341-347.	1.3	7
84	Should I Stay or Should I Go? CRHPVN Neurons Gate State Transitions in Stress-Related Behaviors. Endocrinology, 2021, 162, .	1.4	6
85	Behavioral Deficits in Mice with Postnatal Disruption of <i>Ndel1</i> in Forebrain Excitatory Neurons: Implications for Epilepsy and Neuropsychiatric Disorders. Cerebral Cortex Communications, 2021, 2, tgaa096.	0.7	6
86	Dynamic synapses in the hypothalamic-neurohypophyseal system. Progress in Brain Research, 2008, 170, 119-128.	0.9	4
87	Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology, 2017, 234, 1725-1739.	1.5	4
88	Stress-Induced Metaplasticity at GABA Synapses. , 2014, , 125-136.		4
89	Chapter 17 Dendritic action potentials in magnocellular neurons. Progress in Brain Research, 2002, 139, 225-234.	0.9	2
90	Backtalk in neurons. Trends in Endocrinology and Metabolism, 2003, 14, 2-3.	3.1	2

#	Article	IF	CITATIONS
91	Embedded Synaptic Feedback in the Neuroendocrine Stress Axis. Journal of Neuroendocrinology, 2015, 27, 481-486.	1.2	2
92	Visual-looming Shadow Task with in-vivo Calcium Activity Monitoring to Assess Defensive Behaviors in Mice. Bio-protocol, 2020, 10, e3826.	0.2	2
93	Monoacylglycerol lipase: stopping surplus at the synapse. Journal of Physiology, 2011, 589, 5335-5336.	1.3	1
94	SOM cells are better at detecting emotion. Nature Neuroscience, 2020, 23, 3-4.	7.1	1
95	A versatile computational algorithm for time-series data analysis and machine-learning models. Npj Parkinson's Disease, 2021, 7, 97.	2.5	1
96	A tonic for anxiety. Nature Neuroscience, 2015, 18, 1434-1435.	7.1	0
97	Glia: emerging from the shadows. Journal of Physiology, 2017, 595, 1883-1883.	1.3	0
98	Astrocyte–Magnocellular Neuron Interactions in Hypothalamic Memory. Masterclass in Neuroendocrinology, 2021, , 81-103.	0.1	0
99	Hemorrhage induced inactivation of presynaptic group III mGluRs controls metaplasticity in circuits regulating fluid balance. FASEB Journal, 2008, 22, 1231.2.	0.2	0
100	A holistic gene-network approach linking stressor heterogeneity to resilience and susceptibility. Neuropsychopharmacology, 2022, 47, 976-977.	2.8	0