
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135935/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Two-Dimensional Porous Molecular Networks of Dehydrobenzo[12]annulene Derivatives via Alkyl Chain Interdigitation. Journal of the American Chemical Society, 2006, 128, 16613-16625.	6.6	343
2	Molecular Loops and Belts. Chemical Reviews, 2006, 106, 5274-5290.	23.0	339
3	Covalent Modification of Graphene and Graphite Using Diazonium Chemistry: Tunable Grafting and Nanomanipulation. ACS Nano, 2015, 9, 5520-5535.	7.3	274
4	One Building Block, Two Different Supramolecular Surfaceâ€Confined Patterns: Concentration in Control at the Solid–Liquid Interface. Angewandte Chemie - International Edition, 2008, 47, 2964-2968.	7.2	273
5	Synthesis, Structure, and Aromaticity of a Hoop-Shaped Cyclic Benzenoid [10]Cyclophenacene. Journal of the American Chemical Society, 2003, 125, 2834-2835.	6.6	187
6	Structural Transformation of a Two-Dimensional Molecular Network in Response to Selective Guest Inclusion. Angewandte Chemie - International Edition, 2007, 46, 2831-2834.	7.2	182
7	Temperature-Induced Structural Phase Transitions in a Two-Dimensional Self-Assembled Network. Journal of the American Chemical Society, 2013, 135, 12068-12075.	6.6	180
8	Control and induction of surface-confined homochiral porous molecular networks. Nature Chemistry, 2011, 3, 714-719.	6.6	179
9	Supramolecular surface-confined architectures created by self-assembly of triangular phenylene–ethynylene macrocycles via van der Waals interaction. Chemical Communications, 2010, 46, 8507.	2.2	170
10	Theoretical Studies on Structures and Aromaticity of Finite-Length Armchair Carbon Nanotubes. Organic Letters, 2003, 5, 3181-3184.	2.4	158
11	Programmable Hierarchical Three-Component 2D Assembly at a Liquidâ^'Solid Interface: Recognition, Selection, and Transformation. Nano Letters, 2008, 8, 2541-2546.	4.5	155
12	Twoâ€Dimensional Crystal Engineering: A Four omponent Architecture at a Liquid–Solid Interface. Angewandte Chemie - International Edition, 2009, 48, 7353-7357.	7.2	154
13	Molecular Clusters in Two-Dimensional Surface-Confined Nanoporous Molecular Networks: Structure, Rigidity, and Dynamics. Journal of the American Chemical Society, 2008, 130, 7119-7129.	6.6	149
14	Molecular Geometry Directed Kagomé and Honeycomb Networks: Toward Two-Dimensional Crystal Engineering. Journal of the American Chemical Society, 2006, 128, 3502-3503.	6.6	143
15	2D Networks of Rhombic-Shaped Fused Dehydrobenzo[12]annulenes: Structural Variations under Concentration Control. Journal of the American Chemical Society, 2009, 131, 17583-17590.	6.6	124
16	Synthesis and Properties of Trefoil-Shaped Tris(hexadehydrotribenzo[12]annulene) and Tris(tetradehydrotribenzo[12]annulene). Organic Letters, 2006, 8, 2933-2936.	2.4	110
17	Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution–solid interface. Nature Chemistry, 2016, 8, 711-717.	6.6	107
18	Donors and Acceptors Based on Triangular Dehydrobenzo[12]annulenes: Formation of a Triple-Layered Rosette Structure by a Charge-Transfer Complex. Journal of the American Chemical Society, 2008, 130, 14339-14345.	6.6	91

#	Article	IF	CITATIONS
19	Creation of Hoop- and Bowl-Shaped Benzenoid Systems by Selective Detraction of [60]Fullerene Conjugation. [10]Cyclophenacene and Fused Corannulene Derivatives. Journal of the American Chemical Society, 2004, 126, 8725-8734.	6.6	84
20	Synthesis of Dehydrobenzo[18]annulene Derivatives and Formation of Self-Assembled Monolayers: Implications of Core Size on Alkyl Chain Interdigitation. Langmuir, 2007, 23, 10190-10197.	1.6	81
21	Role of Substrate in Directing the Self-Assembly of Multicomponent Supramolecular Networks at the Liquid–Solid Interface. ACS Nano, 2012, 6, 8381-8389.	7.3	74
22	Thermal control of sequential on-surface transformation of a hydrocarbon molecule on a copper surface. Nature Communications, 2016, 7, 12711.	5.8	71
23	Solvent-Induced Homochirality in Surface-Confined Low-Density Nanoporous Molecular Networks. Journal of the American Chemical Society, 2012, 134, 19568-19571.	6.6	69
24	One Building Block, Two Different Nanoporous Self-Assembled Monolayers: A Combined STM and Monte Carlo Study. ACS Nano, 2012, 6, 897-903.	7.3	69
25	Site-Selective Guest Inclusion in Molecular Networks of Butadiyne-Bridged Pyridino and Benzeno Square Macrocycles on a Surface. Journal of the American Chemical Society, 2008, 130, 6666-6667.	6.6	66
26	Syntheses and Properties of Graphyne Fragments: Trigonally Expanded Dehydrobenzo[12]annulenes. Chemistry - A European Journal, 2013, 19, 11251-11260.	1.7	66
27	Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. Bulletin of the Chemical Society of Japan, 2016, 89, 1277-1306.	2.0	65
28	Synthesis and Electrochemistry of Double-Decker Buckyferrocenes. Journal of the American Chemical Society, 2006, 128, 7154-7155.	6.6	63
29	Theoretical Studies on Graphyne Substructures:Â Geometry, Aromaticity, and Electronic Properties of the Multiply Fused Dehydrobenzo[12]annulenes. Journal of Organic Chemistry, 2007, 72, 1437-1442.	1.7	62
30	Host–Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid–Solid Interfaces. Langmuir, 2017, 33, 4601-4618.	1.6	60
31	A Tale of Tails: Alkyl Chain Directed Formation of 2D Porous Networks Reveals Odd–Even Effects and Unexpected Bicomponent Phase Behavior. ACS Nano, 2013, 7, 8031-8042.	7.3	58
32	Tailoring Surface onfined Nanopores with Photoresponsive Groups. Angewandte Chemie - International Edition, 2013, 52, 8373-8376.	7.2	57
33	Multifunctional π-Expanded Macrocyclic Oligothiophene 6-Mers and Related Macrocyclic Oligomers. Journal of the American Chemical Society, 2014, 136, 2389-2396.	6.6	56
34	Regioselective Eightfold and Tenfold Additions of a Pyridine-Modified Organocopper Reagent to [60]Fullerene. Angewandte Chemie - International Edition, 2007, 46, 2844-2847.	7.2	55
35	Giant molecular spoked wheels in giant voids: two-dimensional molecular self-assembly goes big. Chemical Communications, 2008, , 3897.	2.2	55
36	Self-Assembled Air-Stable Supramolecular Porous Networks on Graphene. ACS Nano, 2013, 7, 10764-10772.	7.3	55

#	Article	IF	CITATIONS
37	Towards enantioselective adsorption in surface-confined nanoporous systems. Chemical Communications, 2015, 51, 4766-4769.	2.2	53
38	Self-Assembled Monolayers as Templates for Linearly Nanopatterned Covalent Chemical Functionalization of Graphite and Graphene Surfaces. ACS Nano, 2018, 12, 11520-11528.	7.3	44
39	Towards two-dimensional nanoporous networks: crystal engineering at the solid–liquid interface. CrystEngComm, 2010, 12, 3369.	1.3	41
40	Periodic Functionalization of Surface-Confined Pores in a Two-Dimensional Porous Network Using a Tailored Molecular Building Block. ACS Nano, 2016, 10, 2113-2120.	7.3	40
41	On the formation of concentric 2D multicomponent assemblies at the solution–solid interface. Chemical Communications, 2017, 53, 1108-1111.	2.2	40
42	Uniquely Shaped Double-Decker Buckyferrocenes—Distinct Electron Donorâ^'Acceptor Interactions. Journal of the American Chemical Society, 2008, 130, 16207-16215.	6.6	38
43	Formation of Multicomponent Star Structures at the Liquid/Solid Interface. Langmuir, 2015, 31, 7032-7040.	1.6	38
44	Mixing Behavior of Alkoxylated Dehydrobenzo[12]annulenes at the Solid–Liquid Interface: Scanning Tunneling Microscopy and Monte Carlo Simulations. ACS Nano, 2011, 5, 4145-4157.	7.3	37
45	Functionalized Surface-Confined Pores: Guest Binding Directed by Lateral Noncovalent Interactions at the Solid–Liquid Interface. ACS Nano, 2014, 8, 8683-8694.	7.3	37
46	Twoâ€Photon Absorption Properties of Dehydrobenzo[12]annulenes and Hexakis(phenylethynyl)benzenes: Effect of Edgeâ€Linkage. ChemPhysChem, 2007, 8, 2671-2677.	1.0	33
47	Multicomponent Selfâ€Assembly with a Shapeâ€Persistent <i>N</i> â€Heterotriangulene Macrocycle on Au(111). Chemistry - A European Journal, 2015, 21, 1652-1659.	1.7	33
48	Steric and Electronic Effects of Electrochemically Generated Aryl Radicals on Grafting of the Graphite Surface. Langmuir, 2019, 35, 2089-2098.	1.6	30
49	X-ray Crystallographic Characterization of Potassium Pentaphenyl[60]fullerene. Chemistry Letters, 2005, 34, 1078-1079.	0.7	29
50	Self-assembly of molecular tripods in two dimensions: structure and thermodynamics from computer simulations. RSC Advances, 2013, 3, 25159.	1.7	29
51	Molecular pentagonal tiling: self-assemblies of pentagonal-shaped macrocycles at liquid/solid interfaces. CrystEngComm, 2011, 13, 5551.	1.3	28
52	Di―and Trinuclear [70]Fullerene Complexes: Syntheses and Metal–Metal Electronic Interactions. Angewandte Chemie - International Edition, 2009, 48, 6239-6241.	7.2	27
53	Role of pseudopolymorphism on concentration dependent competitive adsorption at a liquid/solid interface. Chemical Communications, 2010, 46, 9125.	2.2	27
54	Selfâ€Assembled Monolayers of Alkoxyâ€Substituted Octadehydrodibenzo[12]annulenes on a Graphite Surface: Attempts at <i>peri</i> â€Benzopolyacene Formation by Onâ€Surface Polymerization. Chemistry - A European Journal, 2010, 16, 8319-8328.	1.7	26

#	Article	IF	CITATIONS
55	Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical Functionalization of Graphitic Surfaces. Journal of the American Chemical Society, 2020, 142, 7699-7708.	6.6	26
56	Electrophilic Transannular Cyclization of Octadehydrodibenzo[12]annulene Reexamined: Indication of the Formation of Both <i>anti-</i> and <i>syn-</i> Indenofluorenes. Journal of Organic Chemistry, 2011, 76, 9116-9121.	1.7	22
57	Efficient screening of 2D molecular polymorphs at the solution–solid interface. Nanoscale, 2015, 7, 5344-5349.	2.8	22
58	Syntheses and Photophysical Properties of Boomerang-shaped Bis(dehydrobenzo[12]annulene) and Trapezoid-shaped Tris(dehydrobenzo[12]annulene). Chemistry Letters, 2007, 36, 838-839.	0.7	21
59	Hexagonal Molecular Tiling by Hexagonal Macrocycles at the Liquid/Solid Interface: Structural Effects on Packing Geometry. Langmuir, 2017, 33, 12453-12462.	1.6	21
60	Direct dendronization of polystyrenes using dendritic diarylcarbenium ion pools. Chemical Communications, 2011, 47, 5575-5577.	2.2	20
61	Molecular Propellers that Consist of Dehydrobenzo[14]annulene Blades. Chemistry - A European Journal, 2012, 18, 12814-12824.	1.7	19
62	Structural Insights into the Mechanism of Chiral Recognition and Chirality Transfer in Host–Guest Assemblies at the Liquid–Solid Interface. Journal of Physical Chemistry C, 2018, 122, 8228-8235.	1.5	19
63	Reversing the Handedness of Selfâ€Assembled Porous Molecular Networks through the Number of Identical Chiral Centres. Angewandte Chemie - International Edition, 2019, 58, 7733-7738.	7.2	19
64	Square Tiling by Square Macrocycles at the Liquid/Solid Interface: Coâ€crystallisation with One―or Twoâ€Dimensional Order. Chemistry - A European Journal, 2015, 21, 6806-6816.	1.7	18
65	Complex Chiral Induction Processes at the Solution/Solid Interface. Journal of Physical Chemistry C, 2016, 120, 17444-17453.	1.5	18
66	Odd–Even Effects in Chiral Phase Transition at the Liquid/Solid Interface. Journal of Physical Chemistry C, 2017, 121, 10430-10438.	1.5	18
67	Formation of a non-crystalline bimolecular porous network at a liquid/solid interface. Chemical Communications, 2011, 47, 11459.	2.2	17
68	Ordering of Molecules with π-Conjugated Triangular Core by Switching Hydrogen Bonding and van der Waals Interactions. Journal of Physical Chemistry C, 2012, 116, 17082-17088.	1.5	17
69	Phase selectivity triggered by nanoconfinement: the impact of corral dimensions. Chemical Communications, 2019, 55, 2226-2229.	2.2	17
70	Conductance of Single Triangular Dehydrobenzo[12]annulene Derivative Bridged between Au Electrodes. Chemistry Letters, 2010, 39, 788-789.	0.7	16
71	Harnessing by a diacetylene unit: a molecular design for porous two-dimensional network formation at the liquid/solid interface. Chemical Communications, 2014, 50, 2831.	2.2	16
72	On the Thermal Stability of Aryl Groups Chemisorbed on Graphite. Journal of Physical Chemistry C, 2020, 124, 1980-1990.	1.5	15

#	Article	IF	CITATIONS
73	Chirality in porous self-assembled monolayer networks at liquid/solid interfaces: induction, reversion, recognition and transfer. Chemical Communications, 2021, 57, 962-977.	2.2	15
74	Solvophobically driven self-association of a butadiyne-bridged pyridine macrocycle. Tetrahedron, 2008, 64, 11490-11494.	1.0	14
75	Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface. Chemical Communications, 2014, 50, 11946-11949.	2.2	14
76	Area-selective passivation of sp ² carbon surfaces by supramolecular self-assembly. Nanoscale, 2017, 9, 5188-5193.	2.8	14
77	How Does Chemisorption Impact Physisorption? Molecular View of Defect Incorporation and Perturbation of Two-Dimensional Self-Assembly. Journal of Physical Chemistry C, 2018, 122, 24046-24054.	1.5	14
78	Direct observation of adsorption geometry for the van der Waals adsorption of a single π-conjugated hydrocarbon molecule on Au(111). Journal of Chemical Physics, 2014, 140, 074709.	1.2	13
79	Self-Assembled Dehydro[24]annulene Monolayers at the Liquid/Solid Interface: Toward On-Surface Synthesis of Tubular π-Conjugated Nanowires. Langmuir, 2016, 32, 5532-5541.	1.6	12
80	Hierarchical two-dimensional molecular assembly through dynamic combination of conformational states at the liquid/solid interface. Chemical Science, 2020, 11, 9254-9261.	3.7	12
81	Tuning the size of supramolecular M4L4 tetrahedra by ligand connectivity. Dalton Transactions, 2012, 41, 9316.	1.6	11
82	Alkoxy Chain Number Effect on Self-Assembly of a Trigonal Molecule at the Liquid/Solid Interface. Journal of Physical Chemistry C, 2019, 123, 27020-27029.	1.5	11
83	Stereospecific Epitaxial Growth of Bilayered Porous Molecular Networks. Journal of the American Chemical Society, 2020, 142, 8662-8671.	6.6	11
84	Porous molecular networks formed by the self-assembly of positively-charged trigonal building blocks at the liquid/solid interfaces. Chemical Communications, 2014, 50, 7683-7685.	2.2	10
85	Chemistry of Anthracene–Acetylene Oligomers XXV: Onâ€5urface Chirality of a Selfâ€Assembled Molecular Network of a Fanâ€Bladeâ€5haped Anthracene–Acetylene Macrocycle with a Long Alkyl Chain. Chemistry - A European Journal, 2015, 21, 5520-5527.	1.7	10
86	Transfer of chiral information from a chiral solvent to a two-dimensional network. Faraday Discussions, 2017, 204, 215-231.	1.6	10
87	Revisiting Dehydrothiopheno[12]annulenes: Synthesis, Electronic Properties, and Aromaticity. Journal of Organic Chemistry, 2021, 86, 13198-13211.	1.7	9
88	Effect of Multiple Interactions on Face-On vs Edge-On Configurations of Butadiyne-Bridged Octadehydrodibenzo[12]annulene Derivatives at the Liquid/Graphite Interface. Journal of Physical Chemistry C, 2015, 119, 15977-15981.	1.5	8
89	Electrostatically Driven Guest Binding in a Self-Assembled Porous Network at the Liquid/Solid Interface. Langmuir, 2018, 34, 6036-6045.	1.6	8
90	Theoretical Study on the Geometry, Aromaticity, and Electronic Properties of Benzo[3,4]cyclobutathiophenes and Their Homologues. Journal of Organic Chemistry, 2019, 84, 9850-9858.	1.7	8

#	Article	IF	CITATIONS
91	Trapping a pentagonal molecule in a self-assembled molecular network: an alkoxylated isosceles triangular molecule does the job. Chemical Communications, 2020, 56, 5401-5404.	2.2	8
92	Design of efficient sergeant molecules for chiral induction in nano-porous supramolecular assemblies. RSC Advances, 2015, 5, 6642-6646.	1.7	7
93	Theoretical Studies on Structures and Aromaticity of Finite-Length Armchair Carbon Nanotubes. Organic Letters, 2003, 5, 5103-5103.	2.4	6
94	Chemistry of Anthracene–Acetylene Oligomers XX: Synthesis, Structures, and Selfâ€Association of Anthracene–Anthraquinone Cyclic Compounds with Ethynylene Linkers. Chemistry - an Asian Journal, 2012, 7, 935-943.	1.7	6
95	Alkoxylated dehydrobenzo[12]annulene on Au(111): from single molecules to quantum dot molecular networks. Chemical Communications, 2015, 51, 10917-10920.	2.2	6
96	On the stability of surface-confined nanoporous molecular networks. Journal of Chemical Physics, 2015, 142, 101932.	1.2	6
97	Construction of cyclic arrays of Zn-porphyrin units and their guest binding at the solid–liquid interface. Chemical Communications, 2016, 52, 14419-14422.	2.2	6
98	On‣urface Evolution of meso â€Isomerism in Twoâ€Dimensional Supramolecular Assemblies. Angewandte Chemie - International Edition, 2019, 58, 9611-9618.	7.2	6
99	Generation of Aromatic (Dehydro)benzoannulene Dications Stabilized by Platinum Catecholate Complexes. ChemPlusChem, 2017, 82, 1052-1056.	1.3	5
100	Computational insight into the origin of unexpected contrast in chiral markers as revealed by STM. Nanoscale, 2018, 10, 1680-1694.	2.8	5
101	Electrostatically Driven Guest Binding in Self-Assembled Molecular Network of Hexagonal Pyridine Macrocycle at the Liquid/Solid Interface: Symmetry Breaking Induced by Coadsorbed Solvent Molecules. Langmuir, 2019, 35, 15051-15062.	1.6	5
102	Coadsorption of Tb ^{III} –Porphyrin Double-decker Single-molecule Magnets in a Porous Molecular Network: Toward Controlled Alignment of Single-molecule Magnets on a Carbon Surface. Chemistry Letters, 2016, 45, 286-288.	0.7	4
103	Reversing the Handedness of Selfâ€Assembled Porous Molecular Networks through the Number of Identical Chiral Centres. Angewandte Chemie, 2019, 131, 7815-7820.	1.6	4
104	Cover Picture: Two-Dimensional Crystal Engineering: A Four-Component Architecture at a Liquid-Solid Interface (Angew. Chem. Int. Ed. 40/2009). Angewandte Chemie - International Edition, 2009, 48, 7267-7267.	7.2	3
105	An Approach to the Synthesis of a Twoâ€Dimensional Polymer Using a Preorganized Hostâ€Guest Network by Selfâ€Assembly at the Liquid/Solid Interface. ChemNanoMat, 2020, 6, 550-559.	1.5	3
106	Titelbild: Two-Dimensional Crystal Engineering: A Four-Component Architecture at a Liquid-Solid Interface (Angew. Chem. 40/2009). Angewandte Chemie, 2009, 121, 7403-7403.	1.6	2
107	PROFILE: Early Excellence inPhysical Organic Chemistry. Journal of Physical Organic Chemistry, 2015, 28, 243-243.	0.9	1
108	On‣urface Evolution of meso â€Isomerism in Twoâ€Dimensional Supramolecular Assemblies. Angewandte Chemie, 2019, 131, 9713-9720.	1.6	0

#	Article	IF	CITATIONS
109	Synthesis, electronic properties, and self-assembly of an alkylated dibenzo(biscorannulene). Organic Chemistry Frontiers, 0, , .	2.3	0