Bradley J Kavanagh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135896/publications.pdf

Version: 2024-02-01

40 papers

2,139 citations

279798 23 h-index 39 g-index

40 all docs

40 docs citations

40 times ranked 1944 citing authors

#	Article	IF	CITATIONS
1	The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54, 3.	2.0	24
2	Measuring the dark matter environments of black hole binaries with gravitational waves. Physical Review D, 2022, 105 , .	4.7	29
3	Scattering Searches for Dark Matter in Subhalos: Neutron Stars, Cosmic Rays, and Old Rocks. Physical Review Letters, 2022, 128, .	7.8	28
4	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
5	Primordial black holes as a dark matter candidate. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 043001.	3.6	303
6	INTEGRAL x-ray constraints on sub-GeV dark matter. Physical Review D, 2021, 103, .	4.7	24
7	Stellar disruption of axion miniclusters in the MilkyÂWay. Physical Review D, 2021, 104, .	4.7	21
8	Transient Radio Signatures from Neutron Star Encounters with QCD Axion Miniclusters. Physical Review Letters, 2021, 127, 131103.	7.8	23
9	Measuring the local dark matter density in the laboratory. Physical Review D, 2021, 104, .	4.7	2
10	Constraining sub-GeV dark matter with the Integral data. Journal of Physics: Conference Series, 2021, 2156, 012033.	0.4	0
11	Paleodetectors for Galactic supernova neutrinos. Physical Review D, 2020, 101, .	4.7	14
12	Detecting dark matter around black holes with gravitational waves: Effects of dark-matter dynamics on the gravitational waveform. Physical Review D, 2020, 102 , .	4.7	63
13	Unique Multimessenger Signal of QCD Axion Dark Matter. Physical Review Letters, 2020, 124, 161101.	7.8	36
14	AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technology, 2020, 7, .	6.3	190
15	Gravitational wave probes of dark matter: challenges and opportunities. SciPost Physics Core, 2020, 3,	2.8	52
16	Discovery prospects of dwarf spheroidal galaxies for indirect dark matter searches. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 040-040.	5.4	6
17	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451
18	Faint light from dark matter: classifying and constraining dark matter-photon effective operators. Journal of High Energy Physics, 2019, 2019, 1.	4.7	33

#	Article	IF	Citations
19	Digging for dark matter: Spectral analysis and discovery potential of paleo-detectors. Physical Review D, 2019, 99, .	4.7	21
20	Primordial black holes as silver bullets for new physics at the weak scale. Physical Review D, 2019, 100,	4.7	25
21	Impact of substructure on local dark matter searches. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 013-013.	5.4	11
22	Earth scattering of superheavy dark matter: Updated constraints from detectors old and new. Physical Review D, $2018, 97, \ldots$	4.7	59
23	Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	5.4	72
24	Bracketing the impact of astrophysical uncertainties on local dark matter searches. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 018-018.	5.4	20
25	Assessing Near-Future Direct Dark Matter Searches with Benchmark-Free Forecasting. Physical Review Letters, 2018, 121, 181101.	7.8	12
26	Precision constraints on radiative neutrino decay with CMB spectral distortion. Physical Review D, $2018, 98, .$	4.7	18
27	Merger rate of a subdominant population of primordial black holes. Physical Review D, 2018, 98, .	4.7	83
28	Signatures of Earth-scattering in the direct detection of Dark Matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 012-012.	5.4	61
29	Probing leptophilic dark sectors with hadronic processes. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 339-348.	4.1	36
30	Time-integrated directional detection of dark matter. Physical Review D, 2017, 96, .	4.7	15
31	Prospects for determining the particle/antiparticle nature of WIMP dark matter with direct detection experiments. Journal of High Energy Physics, 2017, 2017, 1.	4.7	17
32	You can hide but you have to run: direct detection with vector mediators. Journal of High Energy Physics, 2016, 2016, 1.	4.7	75
33	Reconstructing the three-dimensional local dark matter velocity distribution. Physical Review D, 2016, 94, .	4.7	19
34	Probing WIMP particle physics and astrophysics with direct detection and neutrino telescope data. Physical Review D, 2015, 91, .	4.7	24
35	New directional signatures from the nonrelativistic effective field theory of dark matter. Physical Review D, 2015, 92, .	4.7	25
36	Discretising the velocity distribution for directional dark matter experiments. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 019-019.	5.4	10

#	Article	lF	CITATIONS
37	WIMP physics with ensembles of direct-detection experiments. Physics of the Dark Universe, 2014, 5-6, 45-74.	4.9	57
38	Parametrizing the local dark matter speed distribution: A detailed analysis. Physical Review D, 2014, 89,	4.7	19
39	Model Independent Determination of the Dark Matter Mass from Direct Detection Experiments. Physical Review Letters, 2013, 111, 031302.	7. 8	45
40	Improved determination of the WIMP mass from direct detection data. Physical Review D, 2012, 86, .	4.7	34