Thomas Korn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135240/publications.pdf

Version: 2024-02-01

43973 53109 25,866 88 48 citations h-index papers

g-index 90 90 90 30615 docs citations times ranked citing authors all docs

85

#	Article	IF	CITATIONS
1	Reply to †Comment on: Repositioning TH cell polarization from single cytokines to complex help'. Nature Immunology, 2022, 23, 503-504.	7.0	1
2	Dynamics of Retinal Vessel Loss After Acute Optic Neuritis in Patients With Relapsing Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	13
3	Interleukin-23 receptor expressing $\hat{l}^3\hat{l}'$ T cells locally promote early atherosclerotic lesion formation and plaque necrosis in mice. Cardiovascular Research, 2022, 118, 2932-2945.	1.8	13
4	Aquaporin-4 prevents exaggerated astrocytosis and structural damage in retinal inflammation. Journal of Molecular Medicine, 2022, 100, 933-946.	1.7	9
5	CNS Treg cells have alternative functions but run on conventional fuel. Nature Immunology, 2022, 23, 818-819.	7.0	1
6	Formation and immunomodulatory function of meningeal B cell aggregatesÂin progressive CNS autoimmunity. Brain, 2021, 144, 1697-1710.	3.7	15
7	APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology, 2021, 97, 68-79.	1.5	96
8	Skin and gut imprinted helper T cell subsets exhibit distinct functional phenotypes in central nervous system autoimmunity. Nature Immunology, 2021, 22, 880-892.	7.0	34
9	Repositioning TH cell polarization from single cytokines to complex help. Nature Immunology, 2021, 22, 1210-1217.	7.0	91
10	Aryl Hydrocarbon Receptor Plasma Agonist Activity Correlates With Disease Activity in Progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	14
11	Keratinocyte-intrinsic BCL10/MALT1 activity initiates and amplifies psoriasiform skin inflammation. Science Immunology, 2021, 6, eabi4425.	5.6	5
12	Cutting Edge: IL-6–Driven Immune Dysregulation Is Strictly Dependent on IL-6R α-Chain Expression. Journal of Immunology, 2020, 204, 747-751.	0.4	5
13	Inner retinal layer thinning in radiologically isolated syndrome predicts conversion to multiple sclerosis. European Journal of Neurology, 2020, 27, 2217-2224.	1.7	21
14	Regulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxal. Nature Immunology, 2020, 21, 555-566.	7.0	147
15	Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. Journal of Clinical Investigation, 2020, 130, 4587-4600.	3.9	42
16	Dendritic Cell Accumulation in the Gut and Central Nervous System Is Differentially Dependent on α4 Integrins. Journal of Immunology, 2019, 203, 1417-1427.	0.4	7
17	Brain-resident memory T cells generated early in life predispose to autoimmune disease in mice. Science Translational Medicine, 2019, 11 , .	5.8	45
18	Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nature Neuroscience, 2019, 22, 1731-1742.	7.1	181

#	Article	IF	CITATIONS
19	Stars Are Not in Outer Space: Astrocytes Respond to Environmental Cues. Cell, 2019, 176, 416-418.	13.5	O
20	Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Reports, 2019, 26, 1854-1868.e5.	2.9	91
21	RelB Deficiency in Dendritic Cells Protects from Autoimmune Inflammation Due to Spontaneous Accumulation of Tissue T Regulatory Cells. Journal of Immunology, 2019, 203, 2602-2613.	0.4	17
22	Multiple sclerosis: is it all black and white in optical coherence tomography?. Brain, 2018, 141, 3088-3091.	3.7	0
23	Myeloid-derived suppressor cells control B cell accumulation in the central nervous system during autoimmunity. Nature Immunology, 2018, 19, 1341-1351.	7. 0	82
24	Deletional tolerance prevents AQP4â€directed autoimmunity in mice. European Journal of Immunology, 2017, 47, 458-469.	1.6	19
25	IL- $1\hat{l}^2$ and IL-23 Promote Extrathymic Commitment of CD27+CD122â^ $^{\prime\prime}$ $\hat{l}^3\hat{l}^{\prime}$ T Cells to $\hat{l}^3\hat{l}^{\prime}$ T17 Cells. Journal of Immunology, 2017, 199, 2668-2679.	0.4	51
26	Dendritic cells in central nervous system autoimmunity. Seminars in Immunopathology, 2017, 39, 99-111.	2.8	35
27	Brain-resident memory T cells represent an autonomous cytotoxic barrier to viral infection. Journal of Experimental Medicine, 2016, 213, 1571-1587.	4.2	162
28	Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination. Multiple Sclerosis Journal, 2016, 22, 893-900.	1.4	74
29	Neutralizing IL-17 protects the optic nerve from autoimmune pathology and prevents retinal nerve fiber layer atrophy during experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2015, 56, 34-44.	3.0	46
30	Th17 cells in central nervous system autoimmunity. Experimental Neurology, 2014, 262, 18-27.	2.0	74
31	$\hat{l}_{\pm}4$ -integrins control viral meningoencephalitis through differential recruitment of T helper cell subsets. Acta Neuropathologica Communications, 2014, 2, 27.	2.4	25
32	Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 2013, 45, 1353-1360.	9.4	1,213
33	Which type of inflammation can be controlled by Foxp3+ Tregs?. Acta Neuropathologica, 2013, 126, 523-524.	3.9	0
34	Enriched CD161 ^{high} CCR6 ⁺ γδT Cells in the Cerebrospinal Fluid of Patients With Multiple Sclerosis. JAMA Neurology, 2013, 70, 345.	4.5	69
35	Immunology of neuromyelitis optica: a T cell–B cell collaboration. Annals of the New York Academy of Sciences, 2013, 1283, 57-66.	1.8	64
36	Patterns of intrathecal autoreactive antibodies in MS using antigen microarrays. Neurology, 2012, 78, 522-523.	1.5	3

#	Article	IF	CITATIONS
37	¹⁸ F-FDG PET Detects Inflammatory Infiltrates in Spinal Cord Experimental Autoimmune Encephalomyelitis Lesions. Journal of Nuclear Medicine, 2012, 53, 1269-1276.	2.8	36
38	Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood, 2012, 120, 3793-3802.	0.6	374
39	IL-17A Production by Renal $\hat{I}^3\hat{I}$ T Cells Promotes Kidney Injury in Crescentic GN. Journal of the American Society of Nephrology: JASN, 2012, 23, 1486-1495.	3.0	78
40	Dendritic Cells Ameliorate Autoimmunity in the CNS by Controlling the Homeostasis of PD-1 Receptor+Regulatory T Cells. Immunity, 2012, 37, 264-275.	6.6	184
41	Unlike αβ <scp>T</scp> cells, γÎ′ <scp>T</scp> cells, <scp>LT</scp> i cells and <scp>NKT</scp> cells do not require <scp>IRF</scp> â€₽2. European Journal of Immunology, 2012, 42, 3189-3201.	1.6	42
42	Potassium Channel KIR4.1 as an Immune Target in Multiple Sclerosis. New England Journal of Medicine, 2012, 367, 115-123.	13.9	314
43	CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. Journal of Neuroinflammation, 2012, 9, 93.	3.1	190
44	Development and function of interleukin 17–producing γδT cells. Annals of the New York Academy of Sciences, 2012, 1247, 34-45.	1.8	56
45	Immune mechanisms of new therapeutic strategies in MS — Teriflunomide. Clinical Immunology, 2012, 142, 49-56.	1.4	120
46	Antigen Targeting to Plasmacytoid Dendritic Cells via Siglec-H Inhibits Th Cell-Dependent Autoimmunity. Journal of Immunology, 2011, 187, 6346-6356.	0.4	95
47	TNF-α–dependent loss of IKKβ-deficient myeloid progenitors triggers a cytokine loop culminating in granulocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6567-6572.	3 . 3	34
48	Functional Characterization of Aquaporin-4 Specific T Cells: Towards a Model for Neuromyelitis Optica. PLoS ONE, 2011, 6, e16083.	1.1	54
49	Cytokines and effector T cell subsets causing autoimmune CNS disease. FEBS Letters, 2011, 585, 3747-3757.	1.3	113
50	Th17 lymphocytes traffic to the central nervous system independently of $\hat{l}\pm 4$ integrin expression during EAE. Journal of Experimental Medicine, 2011, 208, 2465-2476.	4.2	241
51	Differential effects of fingolimod (FTY720) on immune cells in the CSF and blood of patients with MS. Neurology, 2011, 76, 1214-1221.	1.5	146
52	CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 2898-2910.	3.9	223
53	Expression of miRNAs miR-133b and miR-206 in the Il17a/f Locus Is Co-Regulated with IL-17 Production in $\hat{I}\pm\hat{I}^2$ and $\hat{I}^3\hat{I}$ T Cells. PLoS ONE, 2011, 6, e20171.	1.1	53
54	$\hat{I}^{3}\hat{I}$ T Cells Enhance Autoimmunity by Restraining Regulatory T Cell Responses via an Interleukin-23-Dependent Mechanism. Immunity, 2010, 33, 351-363.	6.6	246

#	Article	IF	Citations
55	Proinflammatory T helper type 17 cells are effective B-cell helpers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14292-14297.	3.3	430
56	Active Immunization with Amyloid-l̂² 1–42 Impairs Memory Performance through TLR2/4-Dependent Activation of the Innate Immune System. Journal of Immunology, 2010, 185, 6338-6347.	0.4	61
57	How T cells take developmental decisions by using the aryl hydrocarbon receptor to sense the environment. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20597-20598.	3 . 3	12
58	Cutting Edge: IL-23 Receptor GFP Reporter Mice Reveal Distinct Populations of IL-17-Producing Cells. Journal of Immunology, 2009, 182, 5904-5908.	0.4	334
59	Interleukin-17 and Type 17 Helper T Cells. New England Journal of Medicine, 2009, 361, 888-898.	13.9	1,285
60	IL-17 and Th17 Cells. Annual Review of Immunology, 2009, 27, 485-517.	9 . 5	4,231
61	Immunological Basis for the Development of Tissue Inflammation and Organ-Specific Autoimmunity in Animal Models of Multiple Sclerosis. Results and Problems in Cell Differentiation, 2009, 51, 43-74.	0.2	28
62	Pathophysiology of multiple sclerosis. Journal of Neurology, 2008, 255, 2-6.	1.8	131
63	Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature, 2008, 453, 65-71.	13.7	1,544
64	Induction and effector functions of TH17 cells. Nature, 2008, 453, 1051-1057.	13.7	1,091
65	Role of Th1 and Th17 cells in organ-specific autoimmunity. Journal of Autoimmunity, 2008, 31, 252-256.	3.0	371
66	IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18460-18465.	3.3	471
67	Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function. Journal of Experimental Medicine, 2007, 204, 1691-1702.	4.2	117
68	Anti-thymocyte globulin (ATG) prevents autoimmune encephalomyelitis by expanding myelin antigen-specific Foxp3+ regulatory T cells. International Immunology, 2007, 19, 1003-1010.	1.8	36
69	Dynamics of antigen-specific regulatory T-cells in the context of autoimmunity. Seminars in Immunology, 2007, 19, 272-278.	2.7	13
70	Th17 cells: Effector T cells with inflammatory properties. Seminars in Immunology, 2007, 19, 362-371.	2.7	384
71	Evidence that nucleocytoplasmic Olig2 translocation mediates brain-injury-induced differentiation of glial precursors to astrocytes. Journal of Neuroscience Research, 2007, 85, 2126-2137.	1.3	75
72	Th17: the third member of the effector T cell trilogy. Current Opinion in Immunology, 2007, 19, 652-657.	2.4	553

#	Article	IF	CITATIONS
73	Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nature Medicine, 2007, 13, 423-431.	15.2	747
74	IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature, 2007, 448, 484-487.	13.7	1, 650
75	The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis. Journal of Neuroimmunology, 2007, 191, 51-60.	1.1	75
76	Autoimmune Modulation of Astrocyte-Mediated Homeostasis. NeuroMolecular Medicine, 2007, 9, 1-16.	1.8	7
77	Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006, 441, 235-238.	13.7	6,365
78	Interaction with antigen-specific T cells regulates expression of the lactate transporter MCT1 in primary rat astrocytes: Specific link between immunity and homeostasis. Glia, 2005, 49, 73-83.	2.5	10
79	Autoantigen specific T cells inhibit glutamate uptake in astrocytes by decreasing expression of astrocytic glutamate transporter GLAST: a mechanism mediated by tumor necrosis factorâ $\in \hat{\mathbf{I}}_{\pm}$. FASEB Journal, 2005, 19, 1878-1880.	0.2	106
80	Microglial Expression of the B7 Family Member B7 Homolog 1 Confers Strong Immune Inhibition: Implications for Immune Responses and Autoimmunity in the CNS. Journal of Neuroscience, 2005, 25, 2537-2546.	1.7	150
81	Lipooligosaccharide of Campylobacter jejuni prevents myelin-specific enteral tolerance to autoimmune neuritis—a potential mechanism in Guillain-Barr© syndrome?. Neuroscience Letters, 2005, 381, 175-178.	1.0	9
82	Impaired Volitional Closure of the Left Eyelid After Right Anterior Cerebral Artery Infarction. Archives of Neurology, 2004, 61, 273.	4.9	15
83	Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomidemechanisms independent of pyrimidine depletion. Journal of Leukocyte Biology, 2004, 76, 950-960.	1.5	94
84	Chronically stimulated microglial cells do no longer alter their immune functions in response to the phagocytosis of apoptotic cells. Journal of Neuroimmunology, 2004, 155, 64-72.	1.1	10
85	Biphasic form of experimental autoimmune neuritis in dark agouti rats and its oral therapy by antigen-specific tolerization. Journal of Neuroscience Research, 2004, 75, 524-535.	1.3	22
86	Vav1-deficient mice are resistant to MOG-induced experimental autoimmune encephalomyelitis due to impaired antigen priming. Journal of Neuroimmunology, 2003, 139, 17-26.	1.1	14
87	The Plasma Membrane-associated Protein RS1 Decreases Transcription of the Transporter SGLT1 in Confluent LLC-PK1 Cells. Journal of Biological Chemistry, 2001, 276, 45330-45340.	1.6	26
88	Cloning and characterization of the transport modifier RS1 from rabbit which was previously assumed to be specific for Na+-d-glucose cotransport. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 131-143.	1.4	24