
Nan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4134708/publications.pdf Version: 2024-02-01

NANTI

#	Article	IF	CITATIONS
1	Mixed Cation FA <i>_x</i> PEA _{1–} <i>_x</i> PbI ₃ with Enhanced Phase and Ambient Stability toward Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1601307.	19.5	298
2	Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. Journal of Materials Chemistry A, 2014, 2, 13587-13592.	10.3	277
3	Direct Evidence of Ion Diffusion for the Silverâ€Electrodeâ€Induced Thermal Degradation of Inverted Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602922.	19.5	277
4	Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20105-20111.	10.3	194
5	Inorganic CsPb _{1â^'} <i>_x<i>Sn<i>_x</i>IBr₂ for Efficient Wideâ€Bandgap Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800525.</i></i>	19.5	192
6	Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nature Communications, 2021, 12, 644.	12.8	109
7	A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. Journal of Materials Chemistry C, 2016, 4, 630-636.	5.5	87
8	lon Migration in Perovskite Lightâ€Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering. Advanced Materials, 2022, 34, e2108102.	21.0	85
9	Multifunctional MgO Layer in Perovskite Solar Cells. ChemPhysChem, 2015, 16, 1727-1732.	2.1	70
10	How Far Are We from Achieving Selfâ€Powered Flexible Health Monitoring Systems: An Energy Perspective. Advanced Energy Materials, 2021, 11, 2002646.	19.5	70
11	Improved Efficiency and Stability of Pb/Sn Binary Perovskite Solar Cells Fabricated by Galvanic Displacement Reaction. Advanced Energy Materials, 2019, 9, 1802774.	19.5	67
12	Enhanced Moisture Stability of Cesium ontaining Compositional Perovskites by a Feasible Interfacial Engineering. Advanced Materials Interfaces, 2017, 4, 1700598.	3.7	65
13	Inkjet Printing Based Droplet Generation for Integrated Online Digital Polymerase Chain Reaction. Analytical Chemistry, 2018, 90, 5329-5334.	6.5	65
14	Stabilizing Perovskite Lightâ€Emitting Diodes by Incorporation of Binary Alkali Cations. Advanced Materials, 2020, 32, e1907786.	21.0	64
15	Multifunctional perovskite capping layers in hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 14973.	10.3	57
16	Role of Excess FAI in Formation of Highâ€Efficiency FAPbI ₃ â€Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1906875.	14.9	44
17	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	10.3	43
18	Degradation Mechanism of Perovskite Lightâ€Emitting Diodes: An In Situ Investigation via Electroabsorption Spectroscopy and Device Modelling. Advanced Functional Materials, 2020, 30, 1910464.	14.9	41

Nan Li

#	Article	IF	CITATIONS
19	Concentrating Single Cells in Picoliter Droplets for Phospholipid Profiling on a Microfluidic System. Small, 2020, 16, e1903402.	10.0	36
20	Shear Stress-Enhanced Internalization of Cell Membrane Proteins Indicated by a Hairpin-Type DNA Probe. Analytical Chemistry, 2018, 90, 5540-5545.	6.5	35
21	Analysis of cellular biomolecules and behaviors using microfluidic chip and fluorescence method. TrAC - Trends in Analytical Chemistry, 2019, 117, 200-214.	11.4	33
22	Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device. Analytical Chemistry, 2019, 91, 12283-12289.	6.5	31
23	Excess Ion-Induced Efficiency Roll-Off in High-Efficiency Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 28546-28554.	8.0	27
24	MoS2-LA-PEI nanocomposite carrier for real-time imaging of ATP metabolism in glioma stem cells co-cultured with endothelial cells on a microfluidic system. Biosensors and Bioelectronics, 2018, 99, 142-149.	10.1	24
25	A Specific Mass-Tag Approach for Detection of Foodborne Pathogens Using MALDI-TOF Mass Spectrometry. Analytical Chemistry, 2022, 94, 3963-3969.	6.5	23
26	Diammoniumâ€Mediated Perovskite Film Formation for Highâ€Luminescence Red Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, .	21.0	23
27	Inkjet Printing Based Separation of Mammalian Cells by Capillary Electrophoresis. Analytical Chemistry, 2017, 89, 8674-8677.	6.5	20
28	ATP-responsive mitochondrial probes for monitoring metabolic processes of glioma stem cells in a 3D model. Chemical Science, 2020, 11, 2744-2749.	7.4	20
29	Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. Journal of Materials Chemistry A, 2015, 3, 8882-8889.	10.3	19
30	The role of interface between electron transport layer and perovskite in halogen migration and stabilizing perovskite solar cells with Cs ₄ SnO ₄ . Journal of Materials Chemistry A, 2018, 6, 23797-23804.	10.3	19
31	Metabolism-Based Capture and Analysis of Circulating Tumor Cells in an Open Space. Analytical Chemistry, 2021, 93, 6955-6960.	6.5	19
32	Nongenetically Encoded and Erasable Imaging Strategy for Receptor-Specific Glycans on Live Cells. Analytical Chemistry, 2019, 91, 2600-2604.	6.5	18
33	Improved charge transport and injection in a meso-superstructured solar cell by a tractable pre-spin-coating process. Physical Chemistry Chemical Physics, 2015, 17, 24092-24097.	2.8	14
34	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	3.6	13
35	Tailoring electrical property of the low-temperature processed SnO2 for high-performance perovskite solar cells. Science China Materials, 2019, 62, 173-180.	6.3	13
36	Alkali-cation-enhanced benzylammonium passivation for efficient and stable perovskite solar cells fabricated through sequential deposition. Journal of Materials Chemistry A, 2020, 8, 19357-19366.	10.3	13

Nan Li

#	Article	IF	CITATIONS
37	A DNA-directed covalent conjugation fluorescence probe for in vitro detection of functional matrix metalloproteinases. Analyst, The, 2017, 142, 634-640.	3.5	12
38	Visual detection of high-risk HPV16 and HPV18 based on loop-mediated isothermal amplification. Talanta, 2020, 217, 121015.	5.5	12
39	Di-4-ANEPPDHQ probes the response of lipid packing to the membrane tension change in living cells. Chinese Chemical Letters, 2022, 33, 1377-1380.	9.0	11
40	Live imaging of cell membrane-localized MT1-MMP activity on a microfluidic chip. Chemical Communications, 2018, 54, 11435-11438.	4.1	10
41	Improved performance of pure formamidinium lead iodide perovskite light-emitting diodes by moisture treatment. Journal of Materials Chemistry C, 2017, 5, 11121-11127.	5.5	8
42	Cell Heterogeneity Revealed by On-Chip Angiogenic Endothelial Cell Migration. ACS Omega, 2020, 5, 3857-3862.	3.5	6
43	Effect of Dai-Bai-Jie on the proliferation and migration of the A549 cells. Chinese Chemical Letters, 2020, 31, 476-478.	9.0	4
44	Shell microparticles of morphology controlled and inner-modified hole from sequential inkjet-printed double emulsions. Science China Chemistry, 2018, 61, 1465-1469.	8.2	3
45	Cell manipulation and cellular analysis. , 2022, , 145-179.		0